Jan Freark de Boer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/841863/publications.pdf

Version: 2024-02-01

29 papers 1,230 citations

430874 18 h-index 28 g-index

29 all docs 29 docs citations

times ranked

29

2375 citing authors

#	Article	IF	CITATIONS
1	VEGFB/VEGFR1-Induced Expansion of Adipose Vasculature Counteracts Obesity and Related Metabolic Complications. Cell Metabolism, 2016, 23, 712-724.	16.2	180
2	Transintestinal Cholesterol Transport Is Active in Mice and Humans and Controls Ezetimibe-Induced Fecal Neutral Sterol Excretion. Cell Metabolism, 2016, 24, 783-794.	16.2	119
3	Intestinal Farnesoid X Receptor Controls Transintestinal Cholesterol Excretion in Mice. Gastroenterology, 2017, 152, 1126-1138.e6.	1.3	109
4	Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice. Journal of Lipid Research, 2016, 57, 1455-1464.	4.2	102
5	A human-like bile acid pool induced by deletion of hepatic Cyp2c70 modulates effects of FXR activation in mice. Journal of Lipid Research, 2020, 61, 291-305.	4.2	93
6	HDL Cholesterol Efflux Predicts Graft Failure in Renal Transplant Recipients. Journal of the American Society of Nephrology: JASN, 2016, 27, 595-603.	6.1	71
7	New insights in the multiple roles of bile acids and their signaling pathways in metabolic control. Current Opinion in Lipidology, 2018, 29, 194-202.	2.7	57
8	Impaired HDL cholesterol efflux in metabolic syndrome is unrelated to glucose tolerance status: the CODAM study. Scientific Reports, 2016, 6, 27367.	3.3	53
9	HDL function is impaired in acute myocardial infarction independent of plasma HDL cholesterol levels. Journal of Clinical Lipidology, 2016, 10, 1318-1328.	1.5	50
10	Cholesterol Transport Revisited: A New Turbo Mechanism to Drive Cholesterol Excretion. Trends in Endocrinology and Metabolism, 2018, 29, 123-133.	7.1	46
11	Liver X Receptor Regulates Triglyceride Absorption Through Intestinal Down-regulation of Scavenger Receptor Class B, Type 1. Gastroenterology, 2016, 150, 650-658.	1.3	41
12	Bioenergetic cues shift FXR splicing towards $FXR\hat{l}\pm2$ to modulate hepatic lipolysis and fatty acid metabolism. Molecular Metabolism, 2015, 4, 891-902.	6.5	33
13	Cholangiopathy and Biliary Fibrosis in Cyp2c70-Deficient Mice Are Fully Reversed by Ursodeoxycholic Acid. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1045-1069.	4.5	31
14	Plasma levels of PBEF/Nampt/visfatin are decreased in patients with liver cirrhosis. American Journal of Physiology - Renal Physiology, 2009, 296, G196-G201.	3.4	29
15	Type I diabetes mellitus decreases in vivo macrophage-to-feces reverse cholesterol transport despite increased biliary sterol secretion in mice. Journal of Lipid Research, 2012, 53, 348-357.	4.2	26
16	ApoE promotes hepatic selective uptake but not RCT due to increased ABCA1-mediated cholesterol efflux to plasma. Journal of Lipid Research, 2012, 53, 929-940.	4.2	25
17	Transintestinal and Biliary Cholesterol Secretion Both Contribute to Macrophage Reverse Cholesterol Transport in Rats—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 643-646.	2.4	24
18	Microbiome Modulation of the Host Adaptive Immunity through Bile Acid Modification. Cell Metabolism, 2020, 31, 445-447.	16.2	22

#	Article	IF	CITATIONS
19	Glucoseâ€6â€Phosphate Regulates Hepatic Bile Acid Synthesis in Mice. Hepatology, 2019, 70, 2171-2184.	7.3	21
20	Hepatic ABCG5/G8 overexpression substantially increases biliary cholesterol secretion but does not impact inÂvivo macrophage-to-feces RCT. Atherosclerosis, 2015, 243, 402-406.	0.8	16
21	Potential of Intestine-Selective FXR Modulation for Treatment of Metabolic Disease. Handbook of Experimental Pharmacology, 2019, 256, 207-234.	1.8	16
22	Modulation of Bile Acid Metabolism to Improve Plasma Lipid and Lipoprotein Profiles. Journal of Clinical Medicine, 2022, 11, 4.	2.4	16
23	Inhibiting Cholesterol Absorption During Lactation Programs Future Intestinal Absorption of Cholesterol in Adult Mice. Gastroenterology, 2017, 153, 382-385.e3.	1.3	13
24	Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Deficiency Reduces Insulin Sensitivity in High-Fat Diet-Fed Mice. PLoS ONE, 2014, 9, e106300.	2.5	10
25	Low production of 12α-hydroxylated bile acids prevents hepatic steatosis in Cyp2c70â^'/â^' mice by reducing fat absorption. Journal of Lipid Research, 2021, 62, 100134.	4.2	9
26	Impaired Bile Acid Metabolism and Gut Dysbiosis in Mice Lacking Lysosomal Acid Lipase. Cells, 2021, 10, 2619.	4.1	8
27	Short-term obeticholic acid treatment does not impact cholangiopathy in Cyp2c70-deficient mice with a human-like bile acid composition. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159163.	2.4	7
28	Group IIA Secretory Phospholipase A2 Predicts Graft Failure and Mortality in Renal Transplant Recipients by Mediating Decreased Kidney Function. Journal of Clinical Medicine, 2020, 9, 1282.	2.4	3
29	Hdl Cholesterol Efflux Predicts Graft Failure But Not Cardiovascular And Overall Mortality In Renal Transplant Recipients. , 2014, , .		O