
Cunjiang Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8418454/publications.pdf Version: 2024-02-01

CUNUANC SONC

#	Article	IF	CITATIONS
1	Efficacy of Various Preservatives on Extending Shelf Life of Vacuum-Packaged Raw Pork during 4°C Storage. Journal of Food Protection, 2018, 81, 636-645.	1.7	14
2	Genetic and metabolic engineering for microbial production of poly-Î ³ -glutamic acid. Biotechnology Advances, 2018, 36, 1424-1433.	11.7	62
3	CRISPR–Mediated Genome Editing and Gene Repression in <i>Scheffersomyces stipitis</i> . Biotechnology Journal, 2018, 13, e1700598.	3.5	39
4	Improvement of levan production in Bacillus amyloliquefaciens through metabolic optimization of regulatory elements. Applied Microbiology and Biotechnology, 2017, 101, 4163-4174.	3.6	21
5	Elucidation of major contributors involved in nitrogen removal and transcription level of nitrogen-cycling genes in activated sludge from WWTPs. Scientific Reports, 2017, 7, 44728.	3.3	15
6	Combinatorial metabolic engineering of Pseudomonas putida KT2440 for efficient mineralization of 1,2,3-trichloropropane. Scientific Reports, 2017, 7, 7064.	3.3	34
7	Recruiting Energy-Conserving Sucrose Utilization Pathways for Enhanced 2,3-Butanediol Production in <i>Bacillus subtilis</i> . ACS Sustainable Chemistry and Engineering, 2017, 5, 11221-11225.	6.7	14
8	Enhancing poly-Î ³ -glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum. Microbial Cell Factories, 2017, 16, 88.	4.0	20
9	Construction of energy-conserving sucrose utilization pathways for improving poly-γ-glutamic acid production in Bacillus amyloliquefaciens. Microbial Cell Factories, 2017, 16, 98.	4.0	24
10	Mutations in genes encoding antibiotic substances increase the synthesis of poly-γ-glutamic acid inBacillus amyloliquefaciensLL3. MicrobiologyOpen, 2017, 6, e00398.	3.0	23
11	Highâ€Throughput Sequencing of Viable Microbial Communities in Raw Pork Subjected to a Fast Cooling Process. Journal of Food Science, 2017, 82, 145-153.	3.1	14
12	Regulation of bacteria population behaviors by AI-2 "consumer cells―and "supplier cells― BMC Microbiology, 2017, 17, 198.	3.3	14
13	Effects of MreB paralogs on poly-γ-glutamic acid synthesis and cell morphology in <i>Bacillus amyloliquefaciens</i> . FEMS Microbiology Letters, 2016, 363, fnw187.	1.8	14
14	Engineering <i>Pseudomonas putida </i> <scp>KT</scp> 2440 for simultaneous degradation of carbofuran and chlorpyrifos. Microbial Biotechnology, 2016, 9, 792-800.	4.2	31
15	Effects of Chromosomal Integration of the Vitreoscilla Hemoglobin Gene (vgb) and S-Adenosylmethionine Synthetase Gene (metK) on Îμ-Poly-l-Lysine Synthesis in Streptomyces albulus NK660. Applied Biochemistry and Biotechnology, 2016, 178, 1445-1457.	2.9	18
16	Metabolic Engineering of <i>Pseudomonas putida</i> KT2440 for Complete Mineralization of Methyl Parathion and γ-Hexachlorocyclohexane. ACS Synthetic Biology, 2016, 5, 434-442.	3.8	54
17	Enhancement of medium-chain-length polyhydroxyalkanoates biosynthesis from glucose by metabolic engineering in Pseudomonas mendocina. Biotechnology Letters, 2016, 38, 313-320.	2.2	11
18	Recruiting a new strategy to improve levan production in Bacillus amyloliquefaciens. Scientific Reports, 2015, 5, 13814.	3.3	38

CUNJIANG SONG

#	Article	IF	CITATIONS
19	Construction of a Bacillus amyloliquefaciens strain for high purity levan production. FEMS Microbiology Letters, 2015, 362, .	1.8	18
20	Biodegradability, cellular compatibility and cell infiltration of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in comparison with poly(ε-caprolactone) and poly(lactide-co-glycolide). Journal of Bioactive and Compatible Polymers, 2015, 30, 209-221.	2.1	7
21	Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil. Biodegradation, 2015, 26, 223-233.	3.0	51
22	An upp-based markerless gene replacement method for genome reduction and metabolic pathway engineering in Pseudomonas mendocina NK-01 and Pseudomonas putida KT2440. Journal of Microbiological Methods, 2015, 113, 27-33.	1.6	18
23	Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering. Metabolic Engineering, 2015, 32, 106-115.	7.0	84
24	Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in <i>B. amyloliquefaciens</i> LL3. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 297-305.	3.0	27
25	Genome Sequence of the ε-Poly- l -Lysine-Producing Strain Streptomyces albulus NK660, Isolated from Soil in Gutian, Fujian Province, China. Genome Announcements, 2014, 2, .	0.8	6
26	Cloning of εâ€polyâ€ <scp>L</scp> â€lysine (εâ€ <scp>PL</scp>) synthetase gene from a newly isolated εâ€ <scp>PL</scp> â€producing <scp><i>S</i></scp> <i>treptomyces albulus</i> â€ <scp>NK</scp> 660 and its heterologous expression in <scp><i>S</i></scp> <i>treptomyces lividans</i> . Microbial Biotechnology, 2014, 7, 155-164.	4.2	32
27	A markerless gene replacement method for B. amyloliquefaciens LL3 and its use in genome reduction and improvement of poly-Î ³ -glutamic acid production. Applied Microbiology and Biotechnology, 2014, 98, 8963-8973.	3.6	32
28	Functions of poly-gamma-glutamic acid (γ-PGA) degradation genes in γ-PGA synthesis and cell morphology maintenance. Applied Microbiology and Biotechnology, 2014, 98, 6397-6407.	3.6	48
29	Metabolic engineering of <scp><i>B</i></scp> <i>acillus amyloliquefaciens</i> for polyâ€gammaâ€glutamic acid (γâ€ <scp>PGA</scp>) overproduction. Microbial Biotechnology, 2014, 7, 446-455.	4.2	28
30	Curing the Plasmid pMC1 from the Poly (γ-glutamic Acid) Producing Bacillus amyloliquefaciens LL3 Strain Using Plasmid Incompatibility. Applied Biochemistry and Biotechnology, 2013, 171, 532-542.	2.9	21
31	Comparison of medium-chain-length polyhydroxyalkanoates synthases from Pseudomonas mendocina NK-01 with the same substrate specificity. Microbiological Research, 2013, 168, 231-237.	5.3	26
32	Short-cut nitrification in biological aerated filters with modified zeolite and nitrifying sludge. Bioresource Technology, 2013, 136, 148-154.	9.6	35
33	Treatment of high-salinity chemical wastewater by indigenous bacteria – bioaugmented contact oxidation. Bioresource Technology, 2013, 144, 380-386.	9.6	21
34	Construction of a Green Fluorescent Protein (GFP)-Marked Multifunctional Pesticide-Degrading Bacterium for Simultaneous Degradation of Organophosphates and Î ³ -Hexachlorocyclohexane. Journal of Agricultural and Food Chemistry, 2013, 61, 1328-1334.	5.2	11
35	Analysis of polyhydroxyalkanoate (PHA) synthase gene and PHA-producing bacteria in activated sludge that produces PHA containing 3-hydroxydodecanoate. FEMS Microbiology Letters, 2013, 346, 56-64.	1.8	30
36	Chromosome integration of theVitreoscillahemoglobin gene (vgb) mediated by temperature-sensitive plasmid enhances I³-PGA production inBacillus amyloliquefaciens. FEMS Microbiology Letters, 2013, 343, 127-134.	1.8	32

CUNJIANG SONG

#	Article	IF	CITATIONS
37	Engineering of recombinant <scp><i>E</i></scp> <i>scherichia coli</i> cells coâ€expressing polyâ€Ĵ³â€glutamic acid (γâ€ <scp>PGA</scp>) synthetase and glutamate racemase for differential yielding of γâ€ <scp>PGA</scp> . Microbial Biotechnology, 2013, 6, 675-684.	4.2	30
38	Introduction of Environmentally Degradable Parameters to Evaluate the Biodegradability of Biodegradable Polymers. PLoS ONE, 2012, 7, e38341.	2.5	42
39	Augmented production of alginate oligosaccharides by the Pseudomonas mendocina NK-01 mutant. Carbohydrate Research, 2012, 352, 109-116.	2.3	14
40	Phase morphology, physical properties, and biodegradation behavior of novel PLA/PHBHHx blends. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 23-31.	3.4	36
41	Phylogenetic Diversity and Metabolic Potential of Activated Sludge Microbial Communities in Full-Scale Wastewater Treatment Plants. Environmental Science & Technology, 2011, 45, 7408-7415.	10.0	166
42	Simultaneous production and characterization of medium-chain-length polyhydroxyalkanoates and alginate oligosaccharides by Pseudomonas mendocina NK-01. Applied Microbiology and Biotechnology, 2011, 92, 791-801.	3.6	53
43	Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresource Technology, 2011, 102, 4251-4257.	9.6	84
44	Complete Genome Sequence of Bacillus amyloliquefaciens LL3, Which Exhibits Glutamic Acid-Independent Production of Poly-γ-Glutamic Acid. Journal of Bacteriology, 2011, 193, 3393-3394.	2.2	37
45	Complete Genome of Pseudomonas mendocina NK-01, Which Synthesizes Medium-Chain-Length Polyhydroxyalkanoates and Alginate Oligosaccharides. Journal of Bacteriology, 2011, 193, 3413-3414.	2.2	22
46	Synthesis of poly (γ-glutamic acid) and heterologous expression of pgsBCA genes. Journal of Molecular Catalysis B: Enzymatic, 2010, 67, 111-116.	1.8	39
47	The rapid evaluation of material biodegradability using an improved ISO 14852 method with a microbial community. Polymer Testing, 2010, 29, 832-839.	4.8	23
48	Twin-Arginine Translocation of Methyl Parathion Hydrolase in <i>Bacillus subtilis</i> . Environmental Science & Technology, 2010, 44, 7607-7612.	10.0	17
49	Thermal properties and degradability of poly(propylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 267 Td (c Stability, 2009, 94, 575-583.	arbonate)/ 5.8	poly(β-hydro 100
50	Biodegradation behavior of polycaprolactone/rice husk ecocomposites in simulated soil medium. Polymer Degradation and Stability, 2008, 93, 1571-1576.	5.8	92
51	Crystallization behavior and biodegradation of poly(3-hydroxybutyrate) and poly(ethylene glycol) multiblock copolymers. Polymer Degradation and Stability, 2006, 91, 1240-1246.	5.8	26
52	Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite. Polymer Degradation and Stability, 2005, 87, 69-76.	5.8	170
53	Estimation on Biodegradability of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/V) and Numbers of Aerobic PHB/V Degrading Microorganisms in Different Natural Environments. Journal of Polymers and the Environment, 2005, 13, 39-45.	5.0	14
54	The biodegradation of poly(3-hydroxy-butyrate-co-3-hydroxyvalerate) (PHB/V) and PHB/V-degrading microorganisms in soil. Polymers for Advanced Technologies, 2003, 14, 184-188.	3.2	16

#	Article	IF	CITATIONS
55	Effects of glucose and glycine on the biodegradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB / V) and the proliferation of PHB / V-degrading microorganisms in soil suspension. Soil Science and Plant Nutrition, 2002, 48, 159-164.	1.9	4
56	Estimation of the Number of Polyhydroxyalkanoate (PHA)-Degraders in Soil and Isolation of Degraders Based on the Method of Most Probable Number (MPN) Using PHA-Film. Bioscience, Biotechnology and Biochemistry, 2001, 65, 1214-1217.	1.3	7
57	Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from Cottonseed Oil and Valeric Acid in Batch Culture of Ralstonia sp. Strain JC-64. Applied Biochemistry and Biotechnology, 2001, 94, 169-178.	2.9	13