Stuart G Baker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/841841/publications.pdf

Version: 2024-02-01

99 papers

2,661 citations

201674 27 h-index 206112 48 g-index

103 all docs

103 docs citations

103 times ranked

2541 citing authors

#	Article	IF	CITATIONS
1	Regression Analysis for Categorical Variables with Outcome Subject to Nonignorable Nonresponse. Journal of the American Statistical Association, 1988, 83, 62-69.	3.1	187
2	The Central Role of Receiver Operating Characteristic (ROC) Curves in Evaluating Tests for the Early Detection of Cancer. Journal of the National Cancer Institute, 2003, 95, 511-515.	6.3	149
3	A perfect correlate does not a surrogate make. BMC Medical Research Methodology, 2003, 3, 16.	3.1	133
4	Using Relative Utility Curves to Evaluate Risk Prediction. Journal of the Royal Statistical Society Series A: Statistics in Society, 2009, 172, 729-748.	1.1	120
5	The paired availability design: A proposal for evaluating epidural analgesia during labor. Statistics in Medicine, 1994, 13, 2269-2278.	1.6	119
6	The Multinomial-Poisson Transformation. Journal of the Royal Statistical Society: Series D (the) Tj ETQq0 0 0 rgB	T /Qverloc	k 10 Tf 50 542
7	Identifying Combinations of Cancer Markers for Further Study as Triggers of Early Intervention. Biometrics, 2000, 56, 1082-1087.	1.4	89
8	The transitive fallacy for randomized trials: If A bests B and B bests C in separate trials, is A better than C?. BMC Medical Research Methodology, 2002, 2, 13.	3.1	86
9	Markers for early detection of cancer: Statistical guidelines for nested case-control studies. BMC Medical Research Methodology, 2002, 2, 4.	3.1	86
10	Putting Risk Prediction in Perspective: Relative Utility Curves. Journal of the National Cancer Institute, 2009, 101, 1538-1542.	6.3	73
11	Paradoxes in carcinogenesis: New opportunities for research directions. BMC Cancer, 2007, 7, 151.	2.6	71
12	Analysis of Survival Data from a Randomized Trial with All-or-None Compliance: Estimating the Cost-Effectiveness of a Cancer Screening Program. Journal of the American Statistical Association, 1998, 93, 929-934.	3.1	70
13	Evaluating markers for the early detection of cancer: overview of study designs and methods. Clinical Trials, 2006, 3, 43-56.	1.6	69
14	A Cancer Theory Kerfuffle Can Lead to New Lines of Research. Journal of the National Cancer Institute, 2014, 107, dju405-dju405.	6.3	66
15	Marginal Regression for Repeated Binary Data with Outcome Subject to Non-Ignorable Non-Response. Biometrics, 1995, 51, 1042.	1.4	63
16	How to interpret a small increase in AUC with an additional risk prediction marker: decision analysis comes through. Statistics in Medicine, 2014, 33, 3946-3959.	1.6	53
17	Identifying genes that contribute most to good classification in microarrays. BMC Bioinformatics, 2006, 7, 407.	2.6	51
18	Research on Early-Stage Carcinogenesis: Are We Approaching Paradigm Instability?. Journal of Clinical Oncology, 2010, 28, 3215-3218.	1.6	46

#	Article	IF	CITATIONS
19	Statistical issues in randomized trials of cancer screening. BMC Medical Research Methodology, 2002, 2, 11.	3.1	42
20	Genetic Susceptibility to Prostate, Breast, and Colorectal Cancer among Nordic Twins. Biometrics, 2005, 61, 55-63.	1.4	40
21	Improving the Biomarker Pipeline to Develop and Evaluate Cancer Screening Tests. Journal of the National Cancer Institute, 2009, 101, 1116-1119.	6.3	39
22	Plausibility of stromal initiation of epithelial cancers without a mutation in the epithelium: a computer simulation of morphostats. BMC Cancer, 2009, 9, 89.	2.6	34
23	Analyzing a Randomized Cancer Prevention Trial with a Missing Binary Outcome, an Auxiliary Variable, and All-or-None Compliance. Journal of the American Statistical Association, 2000, 95, 43-50.	3.1	33
24	Simple maximum likelihood estimates of efficacy in randomized trials and before-and-after studies, with implications for meta-analysis. Statistical Methods in Medical Research, 2005, 14, 349-367.	1.5	32
25	Regression Analysis of Grouped Survival Data: Informative Censoring and Double Sampling. Biometrics, 1993, 49, 379.	1.4	31
26	Evaluating a New Marker for Risk Prediction Using the Test Tradeoff: An Update. International Journal of Biostatistics, 2012, 8, 1-37.	0.7	30
27	Composite linear models for incomplete multinomial data. Statistics in Medicine, 1994, 13, 609-622.	1.6	28
28	Surrogate Endpoint Analysis: An Exercise in Extrapolation. Journal of the National Cancer Institute, 2013, 105, 316-320.	6.3	28
29	A simple meta-analytic approach for using a binary surrogate endpoint to predict the effect of intervention on true endpoint. Biostatistics, 2006, 7, 58-70.	1.5	27
30	A Simple Method for Computing the Observed Information Matrix When Using the EM Algorithm with Categorical Data. Journal of Computational and Graphical Statistics, 1992, 1, 63-76.	1.7	26
31	Latent class instrumental variables: a clinical and biostatistical perspective. Statistics in Medicine, 2016, 35, 147-160.	1.6	25
32	Evaluating Screening for the Early Detection and Treatment of Cancer without Using a Randomized Control Group. Journal of the American Statistical Association, 1990, 85, 321-327.	3.1	24
33	The Paired Availability Design for Historical Controls. BMC Medical Research Methodology, 2001, 1, 9.	3.1	24
34	Paradoxes in Carcinogenesis Should Spur New Avenues of Research: An Historical Perspective. Disruptive Science and Technology, 2012, 1, 100-107.	1.0	24
35	Biomarkers, subgroup evaluation, and clinical trial design. Discovery Medicine, 2012, 13, 187-92.	0.5	24
36	Estimating the cumulative risk of false positive cancer screenings. BMC Medical Research Methodology, 2003, 3, 11.	3.1	23

#	Article	IF	CITATIONS
37	Lead Time and Overdiagnosis. Journal of the National Cancer Institute, 2014, 106, dju346-dju346.	6.3	23
38	Evaluating a new test using a reference test with estimated sensitivity and specificity. Communications in Statistics - Theory and Methods, 1991, 20, 2739-2752.	1.0	21
39	Recognizing Paradigm Instability in Theories of Carcinogenesis. British Journal of Medicine and Medical Research, 2014, 4, 1149-1163.	0.2	19
40	Systems biology and cancer: Promises and perils. Progress in Biophysics and Molecular Biology, 2011, 106, 410-413.	2.9	18
41	Simple adjustments for randomized trials with nonrandomly missing or censored outcomes arising from informative covariates. Biostatistics, 2005, 7, 29-40.	1.5	17
42	The Randomized Registry Trial. New England Journal of Medicine, 2014, 370, 681-682.	27.0	17
43	Regression Analysis of Grouped Survival Data with Incomplete Covariates: Nonignorable Missing-Data and Censoring Mechanisms. Biometrics, 1994, 50, 821.	1.4	16
44	A sensitivity analysis for nonrandomly missing categorical data arising from a national health disability survey. Biostatistics, 2003, 4, 41-56.	1.5	16
45	Simple and flexible classification of gene expression microarrays via Swirls and Ripples. BMC Bioinformatics, 2010, 11, 452.	2.6	16
46	Common susceptibility genes for cancer: search for the end of the rainbow. BMJ: British Medical Journal, 2006, 332, 1150-1152.	2.3	15
47	Causal inference, probability theory, and graphical insights. Statistics in Medicine, 2013, 32, 4319-4330.	1.6	15
48	Development Tracks for Cancer Prevention Markers. Disease Markers, 2004, 20, 97-102.	1.3	14
49	Designing a Randomized Clinical Trial to Evaluate Personalized Medicine: A New Approach Based on Risk Prediction. Journal of the National Cancer Institute, 2010, 102, 1756-1759.	6.3	14
50	Predicting Treatment Effect from Surrogate Endpoints and Historical Trials: An Extrapolation Involving Probabilities of a Binary Outcome or Survival to a Specific Time. Biometrics, 2012, 68, 248-257.	1.4	14
51	Evaluating surrogate endpoints, prognostic markers, and predictive markers: Some simple themes. Clinical Trials, 2015, 12, 299-308.	1.6	14
52	Estimation and Inference for the Causal Effect of Receiving Treatment on a Multinomial Outcome: An Alternative Approach. Biometrics, 2011, 67, 319-323.	1.4	13
53	Revisiting a Discrepant Result: A Propensity Score Analysis, the Paired Availability Design for Historical Controls, and a Meta-Analysis of Randomized Trials. Journal of Causal Inference, 2013, 1, 51-82.	1.2	13
54	Randomized trials, generalizability, and meta-analysis: Graphical insights for binary outcomes. BMC Medical Research Methodology, 2003, 3, 10.	3.1	12

#	Article	IF	CITATIONS
55	Paradox-Driven Cancer Research. Disruptive Science and Technology, 2013, 1, 143-148.	1.0	12
56	Early reporting for cancer screening trials. Journal of Medical Screening, 2008, 15, 122-129.	2.3	11
57	A simple method for analyzing data from a randomized trial with a missing binary outcome. BMC Medical Research Methodology, 2003, 3, 8.	3.1	10
58	Using microarrays to study the microenvironment in tumor biology: The crucial role of statistics. Seminars in Cancer Biology, 2008, 18, 305-310.	9.6	10
59	Evaluating serial observations of precancerous lesions for further study as a trigger for early intervention. Statistics in Medicine, 2002, 21, 2383-2390.	1.6	9
60	Using observational data to estimate an upper bound on the reduction in cancer mortality due to periodic screening. BMC Medical Research Methodology, 2003, 3, 4.	3.1	9
61	Comparing breast cancer mortality rates before-and-after a change in availability of screening in different regions: Extension of the paired availability design. BMC Medical Research Methodology, 2004, 4, 12.	3.1	9
62	TOFT better explains experimental results in cancer research than SMT (Comment on DOI) Tj ETQq0 0 0 rgBT /O	verlock 10 2.5) Tf ₉ 50 462 To
63	Evaluating Prognostic Markers Using Relative Utility Curves and Test Tradeoffs. Journal of Clinical Oncology, 2015, 33, 2578-2580.	1.6	9
64	Five criteria for using a surrogate endpoint to predict treatment effect based on data from multiple previous trials. Statistics in Medicine, 2018, 37, 507-518.	1.6	9
65	Estimating the cumulative risk of a false-positive under a regimen involving various types of cancer screening tests. Journal of Medical Screening, 2008, 15, 18-22.	2.3	8
66	Two simple approaches for validating a binary surrogate endpoint using data from multiple trials. Statistical Methods in Medical Research, 2008, 17, 505-514.	1.5	8
67	The Risky Reliance on Small Surrogate End Point Studies When Planning a Large Prevention Trial. Journal of the Royal Statistical Society Series A: Statistics in Society, 2013, 176, 603-608.	1.1	8
68	The summary test tradeoff: a new measure of the value of an additional risk prediction marker. Statistics in Medicine, 2017, 36, 4491-4494.	1.6	8
69	A Simple Loglinear Model for Haplotype Effects in a Case-Control Study Involving Two Unphased Genotypes. Statistical Applications in Genetics and Molecular Biology, 2005, 4, Article14.	0.6	7
70	Evaluating Markers for Guiding Treatment. Journal of the National Cancer Institute, 2016, 108, djw101.	6.3	7
71	The case for a cancer paradox initiative. Carcinogenesis, 2021, 42, 1023-1025.	2.8	7
72	Transparency and reproducibility in data analysis: the Prostate Cancer Prevention Trial. Biostatistics, 2010, 11, 413-418.	1.5	6

#	Article	IF	CITATIONS
73	Biomarker evaluation in randomized trials: addressing different research questions. Statistics in Medicine, 2014, 33, 4139-4140.	1.6	6
74	Maximum likelihood estimation with missing outcomes: From simplicity to complexity. Statistics in Medicine, 2019, 38, 4453-4474.	1.6	6
75	The fallacy of enrolling only high-risk subjects in cancer prevention trials: Is there a "free lunch"?. BMC Medical Research Methodology, 2004, 4, 24.	3.1	5
76	Simple Decision-Analytic Functions of the AUC for Ruling Out a Risk Prediction Model and an Added Predictor. Medical Decision Making, 2018, 38, 225-234.	2.4	5
77	Simple Methods for Evaluating 4 Types of Biomarkers: Surrogate Endpoint, Prognostic, Predictive, and Cancer Screening. Biomarker Insights, 2020, 15, 117727192094671.	2.5	5
78	Metrics for Evaluating Polygenic Risk Scores. JNCI Cancer Spectrum, 2021, 5, .	2.9	5
79	Randomized trials for the real world: making as few and as reasonable assumptions as possible. Statistical Methods in Medical Research, 2008, 17, 243-252.	1.5	4
80	Decision Curves and Relative Utility Curves. Medical Decision Making, 2019, 39, 489-490.	2.4	4
81	Rethinking carcinogenesis: The detached pericyte hypothesis. Medical Hypotheses, 2020, 144, 110056.	1.5	4
82	Breast cancer overdiagnosis in stop-screen trials: More uncertainty than previously reported. Journal of Medical Screening, 2021, 28, 185-192.	2.3	4
83	The Latent Class Twin Method. Biometrics, 2016, 72, 827-834.	1.4	2
84	Cancer Screening Markers: A Simple Strategy to Substantially Reduce the Sample Size for Validation. Medical Decision Making, 2019, 39, 130-136.	2.4	2
85	CACE and metaâ€analysis (Letter to the Editor). Biometrics, 2020, 76, 1383-1384.	1.4	2
86	Discussion of Double Sampling for Survival Analysis. Biometrics, 2001, 57, 348-350.	1.4	1
87	Comment on Nie et al. (2011), Biometrics, Early View. Biometrics, 2012, 68, 992-992.	1.4	1
88	Instrumental variable methods for causal inference: early work and recent developments. Statistics in Medicine, 2014, 33, 3058-3059.	1.6	1
89	A latent class method for diagnostic tests: the new, reference, gold standard problem. Statistics in Medicine, 2014, 33, 4320-4320.	1.6	1
90	Response. Journal of the National Cancer Institute, 2015, 107, djv061-djv061.	6.3	1

#	Article	IF	CITATIONS
91	RE: Combined Associations of Genetic and Environmental Risk Factors: Implications for Prevention of Breast Cancer. Journal of the National Cancer Institute, 2015, 107, djv127-djv127.	6.3	1
92	Instrumental variable meta-analysis Comment on: Adjustment for compliance behavior in trials of epidural analgesia in labor using instrumental variable meta-analysis. Journal of Clinical Epidemiology, 2017, 91, 146-147.	5.0	1
93	Remarks on â€~A simple decision analytic solution to the comparison of two binary diagnostic tests' by Vickers <i>et al.</i> . Statistics in Medicine, 2013, 32, 718-718.	1.6	0
94	Letter to the Editor: "Comment on Hubbard and Miglioretti (2013), Consider Also a Selection Model for the Cumulative Risk of False Positive Screening Tests― Biometrics, 2013, 69, 1084-1084.	1.4	0
95	Additional thoughts on causal inference, probability theory, and graphical insights. Statistics in Medicine, 2013, 32, 4334-4337.	1.6	O
96	Comparative Analysis of Biologically Relevant Response Curves in Gene Expression Experiments: Heteromorphy, Heterochrony, and Heterometry. Microarrays (Basel, Switzerland), 2014, 3, 39-51.	1.4	0
97	Erratum to Revisiting a Discrepant Result: A Propensity Score Analysis, the Paired Availability Design for Historical Controls, and a Meta-Analysis of Randomized Trials [J Causal Inference DOI:]. Journal of Causal Inference, 2014, 2, 113.	1.2	0
98	Surrogate Endpoint., 2018,, 1-5.		0
99	Modeling the mean time to interval cancer after negative results of periodic cancer screening. Statistics in Medicine, 2021, 40, 1429-1439.	1.6	O