List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8418305/publications.pdf Version: 2024-02-01

		168829	214428
120	3,193	31	50
papers	citations	h-index	g-index
104	104	104	4111
124	124	124	4111
all docs	docs citations	times ranked	citing authors

THDAN R

#	Article	IF	CITATIONS
1	Glucagonâ€like peptideâ€l receptor agonist treatment of high carbohydrate intakeâ€induced metabolic syndrome provides pleiotropic effects on cardiac dysfunction through alleviations in electrical and intracellular Ca ²⁺ abnormalities and mitochondrial dysfunction. Clinical and Experimental Pharmacology and Physiology, 2022, 49, 46-59.	0.9	10
2	Insulin acts as an atypical KCNQ1/KCNE1 urrent activator and reverses long QT in insulinâ€resistant aged rats by accelerating the ventricular action potential repolarization through affecting the β ₃ â€adrenergic receptor signaling pathway. Journal of Cellular Physiology, 2022, 237, 1353-1371.	2.0	8
3	Comparisons of pleiotropic effects of SGLT2 inhibition and GLP-1 agonism on cardiac glucose intolerance in heart dysfunction. Molecular and Cellular Biochemistry, 2022, 477, 2609-2625.	1.4	4
4	Intracellular Redistribution of Left Ventricular Connexin 43 Contributes to the Remodeling of Electrical Properties of the Heart in Insulin-resistant Elderly Rats. Journal of Histochemistry and Cytochemistry, 2022, 70, 447-462.	1.3	6
5	Effect of Exosomes Secreted from N-acetylcysteine Pretreated Cardiomyocytes on Aging-induced ROS Production. Journal of Ankara University Faculty of Medicine, 2022, 75, 162-170.	0.0	0
6	The role of labile Zn2+ and Zn2+–transporters in the pathophysiology of mitochondria dysfunction in cardiomyocytes. Molecular and Cellular Biochemistry, 2021, 476, 971-989.	1.4	10
7	Interrelated In Vitro Mechanisms of Sibutramine-Induced Cardiotoxicity. Cardiovascular Toxicology, 2021, 21, 322-335.	1.1	2
8	Age-related Alterations in Cardiac Function and miRNA's. Journal of Ankara University Faculty of Medicine, 2021, 74, 239-244.	0.0	1
9	Beneficial Effect of a Mitochondrial-targeted Antioxidant Mitotempo in Insulin-resistant Mammalian Cardiac Dysfunction. Journal of Ankara University Faculty of Medicine, 2021, 74, 252-258.	0.0	1
10	The Concentration-dependent Investigation of the Toxic Effects of the Anorectic Agent Sibutramine on the Electrical Activity of the Cardiomyocytes in Metabolic Syndrome Rat Heart. Journal of Ankara University Faculty of Medicine, 2021, 74, 245-251.	0.0	0
11	Investigation of the Effect of the Antiaggregant Agent Ticagrelor on the Electrical and Mechanical Activities of Rat Heart With Type 1 Diabetes. Journal of Ankara University Faculty of Medicine, 2021, 74, 206-212.	0.0	0
12	Ticagrelor alleviates high-carbohydrate intake induced altered electrical activity of ventricular cardiomyocytes by regulating sarcoplasmic reticulum–mitochondria miscommunication. Molecular and Cellular Biochemistry, 2021, 476, 3827-3844.	1.4	4
13	Bimodal Effects of P2Y12 Antagonism on Matrix Metalloproteinase–Associated Contractile Dysfunction in İnsulin-Resistant Mammalian Heart. Biological Trace Element Research, 2021, , 1.	1.9	0
14	Differential expression of genes participating in cardiomyocyte electrophysiological remodeling via membrane ionic mechanisms and Ca2+-handling in human heart failure. Molecular and Cellular Biochemistry, 2020, 463, 33-44.	1.4	10
15	Altered mitochondrial metabolism in the insulinâ€resistant heart. Acta Physiologica, 2020, 228, e13430.	1.8	56
16	Ageingâ€associated increase in SGLT2 disrupts mitochondrial/sarcoplasmic reticulum Ca ²⁺ homeostasis and promotes cardiac dysfunction. Journal of Cellular and Molecular Medicine, 2020, 24, 8567-8578.	1.6	27
17	Titin and CK2α are New Intracellular Targets in Acute Insulin Application-Associated Benefits on Electrophysiological Parameters of Left Ventricular Cardiomyocytes From Insulin-Resistant Metabolic Syndrome Rats. Cardiovascular Drugs and Therapy, 2020, 34, 487-501.	1.3	11
18	The role of mitochondrial reactive oxygen species, NO and H ₂ S in ischaemia/reperfusion injury and cardioprotection. Journal of Cellular and Molecular Medicine, 2020, 24, 6510-6522.	1.6	58

#	Article	IF	CITATIONS
19	MitoTEMPO provides an antiarrhythmic effect in aged-rats through attenuation of mitochondrial reactive oxygen species. Experimental Gerontology, 2020, 136, 110961.	1.2	20
20	Ticagrelor reverses the mitochondrial dysfunction through preventing accumulated autophagosomes-dependent apoptosis and ER stress in insulin-resistant H9c2 myocytes. Molecular and Cellular Biochemistry, 2020, 469, 97-107.	1.4	7
21	The Expression Levels of Klotho, Endothelial Nitrite Oxide Synthetase and Catalase Genes of the Heart Tissues of Young and Old Rats. Journal of Ankara University Faculty of Medicine, 2020, 73, 197-202.	0.0	0
22	A Brief Overview from the Physiological and Detrimental Roles of Zinc Homeostasis via Zinc Transporters in the Heart. Biological Trace Element Research, 2019, 188, 160-176.	1.9	13
23	Mitochondria-Targeting Antioxidant Provides Cardioprotection through Regulation of Cytosolic and Mitochondrial Zn2+ Levels with Re-Distribution of Zn2+-Transporters in Aged Rat Cardiomyocytes. International Journal of Molecular Sciences, 2019, 20, 3783.	1.8	19
24	Azoramide improves mitochondrial dysfunction in palmitate-induced insulin resistant H9c2 cells. Molecular and Cellular Biochemistry, 2019, 461, 65-72.	1.4	9
25	The contribution of phosphodiesterases to cardiac dysfunction in rats with metabolic syndrome induced by a high-carbohydrate diet. Canadian Journal of Physiology and Pharmacology, 2019, 97, 1064-1072.	0.7	3
26	A sodium-glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin comparison with insulin shows important effects on Zn2+-transporters in cardiomyocytes from insulin-resistant metabolic syndrome rats through inhibition of oxidative stress. Canadian Journal of Physiology and Pharmacology, 2019, 97, 528-535.	0.7	24
27	β 3 â€adrenergic receptor activation plays an important role in the depressed myocardial contractility via both elevated levels of cellular free Zn 2+ and reactive nitrogen species. Journal of Cellular Physiology, 2019, 234, 13370-13386.	2.0	7
28	Zn2+-transporters ZIP7 and ZnT7 play important role in progression of cardiac dysfunction via affecting sarco(endo)plasmic reticulum-mitochondria coupling in hyperglycemic cardiomyocytes. Mitochondrion, 2019, 44, 41-52.	1.6	40
29	Effects of timolol treatment on pancreatic antioxidant enzymes in streptozotocin-induced diabetic rats: An experimental and computational study. Journal of Medical Biochemistry, 2019, 38, 306-316.	0.7	5
30	Increased free Zn ²⁺ correlates induction of sarco(endo)plasmic reticulum stress <i>via</i> altered expression levels of Zn ²⁺ â€transporters in heart failure. Journal of Cellular and Molecular Medicine, 2018, 22, 1944-1956.	1.6	25
31	Cytosolic increased labile Zn2+ contributes to arrhythmogenic action potentials in left ventricular cardiomyocytes through protein thiol oxidation and cellular ATP depletion. Journal of Trace Elements in Medicine and Biology, 2018, 48, 202-212.	1.5	14
32	Induction of endoplasmic reticulum stress and changes in expression levels of Zn2+-transporters in hypertrophic rat heart. Molecular and Cellular Biochemistry, 2018, 440, 209-219.	1.4	19
33	Demonstration of subcellular migration of CK2α localization from nucleus to sarco(endo)plasmic reticulum in mammalian cardiomyocytes under hyperglycemia. Molecular and Cellular Biochemistry, 2018, 443, 25-36.	1.4	6
34	A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats. Cardiovascular Diabetology, 2018, 17, 144.	2.7	105
35	Aging related functional and structural changes in the heart and aorta: MitoTEMPO improves aged-cardiovascular performance. Experimental Gerontology, 2018, 110, 172-181.	1.2	46
36	Hyperglycemia-Induced Changes in ZIP7 and ZnT7 Expression Cause Zn2+ Release From the Sarco(endo)plasmic Reticulum and Mediate ER Stress in the Heart. Diabetes, 2017, 66, 1346-1358.	0.3	66

#	Article	IF	CITATIONS
37	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	3.9	242
38	Onset of decreased heart work is correlated with increased heart rate and shortened QT interval in high-carbohydrate fed overweight rats. Canadian Journal of Physiology and Pharmacology, 2017, 95, 1335-1342.	0.7	19
39	Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology. International Journal of Molecular Sciences, 2017, 18, 2395.	1.8	30
40	Electrophysiological basis of metabolic-syndrome-induced cardiac dysfunction. Canadian Journal of Physiology and Pharmacology, 2016, 94, 1064-1073.	0.7	30
41	Interplay Between Cytosolic Free Zn2+ and Mitochondrion Morphological Changes in Rat Ventricular Cardiomyocytes. Biological Trace Element Research, 2016, 174, 177-188.	1.9	20
42	Intracellular Zn2+ Increase in Cardiomyocytes Induces both Electrical and Mechanical Dysfunction in Heart via Endogenous Generation of Reactive Nitrogen Species. Biological Trace Element Research, 2016, 169, 294-302.	1.9	31
43	A Comparative Summary on Antioxidant-like Actions of Timolol with Other Antioxidants in Diabetic Cardiomyopathy. Current Drug Delivery, 2016, 13, 418-423.	0.8	6
44	Profiling of cardiac β-adrenoceptor subtypes in the cardiac left ventricle of rats with metabolic syndrome: Comparison with streptozotocin-induced diabetic rats. Canadian Journal of Physiology and Pharmacology, 2015, 93, 517-525.	0.7	21
45	Immuno-spin trapping detection of antioxidant/pro-oxidant properties of zinc or selenium on DNA and protein radical formation via hydrogen peroxide. Molecular and Cellular Biochemistry, 2015, 409, 23-31.	1.4	4
46	Enhancement of Cellular Antioxidant-Defence Preserves Diastolic Dysfunction via Regulation of Both Diastolic Zn2+and Ca2+and Prevention of RyR2-Leak in Hyperglycemic Cardiomyocytes. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-15.	1.9	30
47	Sex Differences and Diabetes Mellitus in Cardiovascular Function. , 2014, , 159-176.		0
48	Improvement of Functional Recovery of Donor Heart Following Cold Static Storage with Doxycycline Cardioplegia. Cardiovascular Toxicology, 2014, 14, 64-73.	1.1	13
49	Beta-blocker timolol alleviates hyperglycemia-induced cardiac damage via inhibition of endoplasmic reticulum stress. Journal of Bioenergetics and Biomembranes, 2014, 46, 377-387.	1.0	23
50	Mitochondrial and ER-Targeted eCALWY Probes Reveal High Levels of Free Zn ²⁺ . ACS Chemical Biology, 2014, 9, 2111-2120.	1.6	102
51	Comparative investigation of kidney mesangial cells from increased oxidative stress-induced diabetic rats by using different microscopy techniques. Molecular and Cellular Biochemistry, 2014, 390, 41-49.	1.4	3
52	Long-term treatment with a beta-blocker timolol attenuates renal-damage in diabetic rats via enhancing kidney antioxidant-defense system. Molecular and Cellular Biochemistry, 2014, 395, 177-186.	1.4	11
53	A Critical Balance Between Oxidative Stress and Antioxidant Defense in Cardiovascular System Under Hyperglycemia: A Summary of Experimental Studies. , 2014, , 123-141.		1
54	Relationship Between Downregulation of miRNAs and Increase of Oxidative Stress in the Development of Diabetic Cardiac Dysfunction: Junctin as a Target Protein of miR-1. Cell Biochemistry and Biophysics, 2013, 67, 1397-1408.	0.9	113

#	Article	IF	CITATIONS
55	Intracellular Levels of Na+ and TTX-sensitive Na+ Channel Current in Diabetic Rat Ventricular Cardiomyocytes. Cardiovascular Toxicology, 2013, 13, 138-147.	1.1	19
56	Cardioprotective effect of selenium via modulation of cardiac ryanodine receptor calcium release channels in diabetic rat cardiomyocytes through thioredoxin system. Journal of Nutritional Biochemistry, 2013, 24, 2110-2118.	1.9	34
57	ß-Blocker Timolol Prevents Arrhythmogenic Ca2+ Release and Normalizes Ca2+ and Zn2+ Dyshomeostasis in Hyperglycemic Rat Heart. PLoS ONE, 2013, 8, e71014.	1.1	44
58	Cardioprotective Roles of Selenium inÂDiabetes. , 2012, , 331-340.		0
59	Resveratrol and diabetic cardiac function: focus on recent in vitro and in vivo studies. Journal of Bioenergetics and Biomembranes, 2012, 44, 281-296.	1.0	70
60	Profound cardioprotection with timolol in a female rat model of aging-related altered left ventricular function. Canadian Journal of Physiology and Pharmacology, 2011, 89, 277-288.	0.7	8
61	Vitamin E in Oxidant Stress-Related Cardiovascular Pathologies: Focus on Experimental Studies. Current Pharmaceutical Design, 2011, 17, 2155-2169.	0.9	4
62	Cardioprotective effect of propranolol on diabetes-induced altered intracellular Ca2+ signaling in rat. Journal of Bioenergetics and Biomembranes, 2011, 43, 747-756.	1.0	16
63	Treatments with sodium selenate or doxycycline offset diabetes-induced perturbations of thioredoxin-1 levels and antioxidant capacity. Molecular and Cellular Biochemistry, 2011, 351, 125-131.	1.4	8
64	Doxycycline Ameliorates Vascular Endothelial and Contractile Dysfunction in the Thoracic Aorta of Diabetic Rats. Cardiovascular Toxicology, 2011, 11, 134-147.	1.1	27
65	Age-related regulation of excitation–contraction coupling in rat heart. Journal of Physiology and Biochemistry, 2011, 67, 317-330.	1.3	9
66	Ryanodine Receptor: A New Therapeutic Target to Control Diabetic Cardiomyopathy. Antioxidants and Redox Signaling, 2011, 15, 1847-1861.	2.5	22
67	Intracellular free zinc during cardiac excitation–contraction cycle: calcium and redox dependencies. Cardiovascular Research, 2011, 89, 634-642.	1.8	54
68	Antioxidant treatment protects diabetic rats from cardiac dysfunction by preserving contractile protein targets of oxidative stress. Journal of Nutritional Biochemistry, 2010, 21, 827-833.	1.9	40
69	Protective Role of Antioxidants in Diabetes-Induced Cardiac Dysfunction. Cardiovascular Toxicology, 2010, 10, 73-86.	1.1	69
70	Selenium restores defective beta-adrenergic receptor response of thoracic aorta in diabetic rats. Molecular and Cellular Biochemistry, 2010, 338, 191-201.	1.4	16
71	Cardioprotective effects of 44Bu, a newly synthesized compound, in rat heart subjected to ischemia/reperfusion injury. European Journal of Pharmacology, 2010, 640, 117-123.	1.7	7
72	Role of Antioxidants in Redox Regulation of Diabetic Cardiovascular Complications. Current Pharmaceutical Biotechnology, 2010, 11, 819-836.	0.9	53

#	Article	IF	CITATIONS
73	Omega-3E treatment regulates matrix metalloproteinases and prevents vascular reactivity alterations in diabetic rat aortaThis article is one of a selection of papers published in a special issue on Advances in Cardiovascular Research Canadian Journal of Physiology and Pharmacology, 2009, 87, 1063-1073.	0.7	16
74	Antioxidants but not Doxycycline Treatments Restore Depressed Beta-Adrenergic Responses of the Heart in Diabetic Rats. Cardiovascular Toxicology, 2009, 9, 21-29.	1.1	17
75	Effects of Î ² -adrenergic receptor blockers on cardiac function: a comparative study in male versus female ratsThis article is one of a selection of papers from the NATO Advanced Research Workshop on Translational Knowledge for Heart Health (published in part 2 of a 2-part Special Issue) Canadian Iournal of Physiology and Pharmacology. 2009. 87. 310-317.	0.7	8
76	Angiotensin II receptor blockage prevents diabetes-induced oxidative damage in rat heart. Folia Biologica, 2009, 55, 11-6.	0.8	8
77	Selenium Inhibits Proliferation Signaling and Restores Sodium/Potassium Pump Function of Diabetic Rat Aorta. Biological Trace Element Research, 2008, 126, 237-245.	1.9	13
78	Protective action of doxycycline against diabetic cardiomyopathy in rats. British Journal of Pharmacology, 2008, 155, 1174-1184.	2.7	63
79	Sex-related effects on diabetes-induced alterations in calcium release in the rat heart. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3584-H3592.	1.5	32
80	Selenium alters the lipid content and protein profile of rat heart: An FTIR microspectroscopic study. Archives of Biochemistry and Biophysics, 2007, 458, 184-193.	1.4	32
81	Restoration of diabetes-induced abnormal local Ca2+ release in cardiomyocytes by angiotensin II receptor blockade. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H912-H920.	1.5	56
82	Gender related differential effects of Omega-3E treatment on diabetes-induced left ventricular dysfunction. Molecular and Cellular Biochemistry, 2007, 304, 255-263.	1.4	31
83	The role of gender differences in beta-adrenergic receptor responsiveness of diabetic rat heart. Molecular and Cellular Biochemistry, 2007, 305, 63-69.	1.4	16
84	Early alterations in myocardia and vessels of the diabetic rat heart: an FTIR microspectroscopic study. Biochemical Journal, 2006, 397, 427-436.	1.7	96
85	Selenium prevents diabetes-induced alterations in [Zn2+]i and metallothionein level of rat heart via restoration of cell redox cycle. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1071-H1080.	1.5	76
86	Beneficial Effects of Selenium on Some Enzymes of Diabetic Rat Heart. Biological Trace Element Research, 2005, 103, 207-216.	1.9	32
87	Interpretation of relevance of sodium?calcium exchange in action potential of diabetic rat heart by mathematical model. Molecular and Cellular Biochemistry, 2005, 269, 121-129.	1.4	13
88	Effects of Diabetes on Ryanodine Receptor Ca Release Channel (RyR2) and Ca2+ Homeostasis in Rat Heart. Diabetes, 2005, 54, 3082-3088.	0.3	150
89	Selenium Improves Cardiac Function by Attenuating the Activation of NF-κB Due to Ischemia–Reperfusion Injury. Antioxidants and Redox Signaling, 2005, 7, 1388-1397.	2.5	44
90	Selenium-induced alterations in ionic currents of rat cardiomyocytes. Biochemical and Biophysical Research Communications, 2005, 327, 163-173.	1.0	20

#	Article	IF	CITATIONS
91	Treatment with AT1 receptor blocker restores diabetes-induced alterations in intracellular Ca2+ transients and contractile function of rat myocardium. Archives of Biochemistry and Biophysics, 2005, 435, 166-174.	1.4	28
92	Effects of selenium on altered mechanical and electrical cardiac activities of diabetic rat. Archives of Biochemistry and Biophysics, 2004, 426, 83-90.	1.4	66
93	Alterations in zinc status and tissue structures of heparin-induced osteoporotic rabbits. Trace Elements and Electrolytes, 2004, 21, 33-40.	0.1	0
94	Inhibition of Glutathione Reductase by Cadmium Ion in Some Rabbit Tissues and the Protective Role of Dietary Selenium. Biological Trace Element Research, 2003, 91, 151-156.	1.9	17
95	Zinc-Induced Changes in Ionic Currents of Cardiomyocytes. Biological Trace Element Research, 2003, 94, 49-60.	1.9	34
96	Selenium combined with vitamin E and vitamin C restores structural alterations of bones in heparin-induced osteoporosis. Clinical Rheumatology, 2003, 22, 432-436.	1.0	34
97	Fourier Transform Infrared Spectroscopic Studies of Diabetic Rat Heart Crude Membranes. Spectroscopy, 2003, 17, 569-577.	0.8	23
98	Effects of selenium on the structure of the mandible in experimental diabetics Journal of Oral Science, 2002, 44, 85-90.	0.7	11
99	Toxic Concentrations of Selenite Shortens Repolarization Phase of Action Potential in Rat Papillary Muscle. Biological Trace Element Research, 2002, 89, 227-238.	1.9	8
100	Adenosine Triphosphate Alters the Selenite-Induced Contracture and Negative Inotropic Effect on Cardiac Muscle Contractions. Biological Trace Element Research, 2001, 79, 235-245.	1.9	4
101	A Comparative Study on Effect of Dietary Selenium and Vitamin E on Some Antioxidant Enzyme Activities of Liver and Brain Tissues. Biological Trace Element Research, 2001, 81, 141-152.	1.9	27
102	A biomechanical and spectroscopic study of bone from rats with selenium deficiency and toxicity. BioMetals, 2000, 13, 113-121.	1.8	23
103	Disulfonic Stilbene Prevents Selenite-Induced Cataract in Rat Pup Lens. Biological Trace Element Research, 2000, 75, 129-138.	1.9	1
104	Dietary Selenium and Vitamin E Intakes Alter β-Adrenergic Response of L-Type Ca-Current and β-Adrenoceptor-Adenylate Cyclase Coupling in Rat Heart. Journal of Nutrition, 2000, 130, 733-740.	1.3	14
105	Fourier transform infrared study of the effect of diabetes on rat liver and heart tissues in the C_H region. Talanta, 2000, 53, 55-59.	2.9	66
106	Cardiac Dysfunction Induced by Low and High Diet Antioxidant Levels Comparing Selenium and Vitamin E in Rats. Regulatory Toxicology and Pharmacology, 1999, 29, 142-150.	1.3	24
107	The effect of altered selenium and vitamin E nutritional status on learning and memory of third-generation rats. Biological Trace Element Research, 1998, 64, 151-160.	1.9	6
108	The effect of selenium and vitamin E on microvascular permeability of rat organs. Biological Trace Element Research, 1998, 64, 161-168.	1.9	9

#	Article	IF	CITATIONS
109	Tissue and concentration-dependent effects of sodium selenite on muscle contraction. Biological Trace Element Research, 1998, 62, 265-280.	1.9	9
110	Oxidants increase intracellular free Zn2+ concentration in rabbit ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 272, H2095-H2106.	1.5	46
111	Dietary selenium- and vitamin E-induced alterations in some rabbit tissues. Biological Trace Element Research, 1997, 58, 237-253.	1.9	8
112	Effect of dietary selenium and vitamin E on the biomechanical properties of rabbit bones. Clinical Rheumatology, 1997, 16, 441-449.	1.0	34
113	Effect of medication on biomechanical properties of rabbit bones: Heparin induced osteoporosis. Clinical Rheumatology, 1997, 16, 585-595.	1.0	18
114	Oxidative effects of selenite on rat ventricular contractility and Ca movements. Cardiovascular Research, 1996, 32, 351-361.	1.8	42
115	The effects of selenium supplementation on antioxidative enzyme activities and plasma and erythrocyte selenium levels. Acta Physiologica Hungarica, 1993, 81, 87-93.	0.9	3
116	The effects of in vivo selenium supplementation on the amplitude of the spontaneous contractions and the responses to acetylcholine in isolated rabbit ileum. Neurobiology (Budapest, Hungary), 1993, 1, 83-90.	0.2	2
117	The Effect of Selenium Supplementation on the NMR Proton Relaxation Time T ₁ in Plasma. Spectroscopy Letters, 1992, 25, 1405-1410.	0.5	1
118	Serum selenium and gluthathione-peroxidase activities and their interaction with toxic metals in dialysis and renal transplantation patients. Biological Trace Element Research, 1992, 33, 95-102.	1.9	31
119	Selenium and Behçet's disease. Biological Trace Element Research, 1991, 28, 21-25.	1.9	27
120	The quantitative investigation of infrared laser effects on the levels of copper and zinc in various tissues. Clinical Physics and Physiological Measurement: an Official Journal of the Hospital Physicists' Association, Deutsche Gesellschaft Fur Medizinische Physik and the European Federation of Organisations for Medical Physics, 1988, 9, 375-377.	0.5	4