
Donald R Ronning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8418286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extraction of DNA by Magnetic Ionic Liquids: Tunable Solvents for Rapid and Selective DNA Analysis. Analytical Chemistry, 2015, 87, 1552-1559.	6.5	176
2	Crystal structure of the secreted form of antigen 85C reveals potential targets for mycobacterial drugs and vaccines. Nature Structural Biology, 2000, 7, 141-146.	9.7	170
3	Gene-target recognition among members of the Myc superfamily and implications for oncogenesis. Nature Genetics, 2000, 24, 113-119.	21.4	125
4	Structural Unity among Viral Origin Binding Proteins. Molecular Cell, 2002, 10, 327-337.	9.7	123
5	Mechanism of IS200/IS605 Family DNA Transposases: Activation and Transposon-Directed Target Site Selection. Cell, 2008, 132, 208-220.	28.9	120
6	Mechanism of inhibition of Mycobacterium tuberculosis antigen 85 by ebselen. Nature Communications, 2013, 4, 2748.	12.8	105
7	The Nuclease Domain of Adeno-Associated Virus Rep Coordinates Replication Initiation Using Two Distinct DNA Recognition Interfaces. Molecular Cell, 2004, 13, 403-414.	9.7	89
8	Mycobacterium tuberculosis Antigen 85A and 85C Structures Confirm Binding Orientation and Conserved Substrate Specificity. Journal of Biological Chemistry, 2004, 279, 36771-36777.	3.4	80
9	Ionic liquids as solvents for in situ dispersive liquid–liquid microextraction of DNA. Journal of Chromatography A, 2013, 1272, 8-14.	3.7	78
10	Targeting the mycobacterial envelope for tuberculosis drug development. Expert Review of Anti-Infective Therapy, 2012, 10, 1023-1036.	4.4	70
11	Active Site Sharing and Subterminal Hairpin Recognition in a New Class of DNA Transposases. Molecular Cell, 2005, 20, 143-154.	9.7	66
12	Covalent Modification of the <i>Mycobacterium tuberculosis</i> FAS-II Dehydratase by Isoxyl and Thiacetazone. ACS Infectious Diseases, 2015, 1, 91-97.	3.8	58
13	Assembling of the Mycobacterium tuberculosis Cell Wall Core. Journal of Biological Chemistry, 2016, 291, 18867-18879.	3.4	48
14	Thermal and Photoinduced Copper-Promoted C–Se Bond Formation: Synthesis of 2-Alkyl-1,2-benzisoselenazol-3(2 <i>H</i>)-ones and Evaluation against <i>Mycobacterium tuberculosis</i> . Journal of Organic Chemistry, 2017, 82, 3844-3854.	3.2	45
15	Recent advances toward the inhibition of mAG and LAM synthesis in <i>Mycobacterium tuberculosis</i> . Medicinal Research Reviews, 2010, 30, 290-326.	10.5	44
16	Inactivation of the Mycobacterium tuberculosis Antigen 85 Complex by Covalent, Allosteric Inhibitors. Journal of Biological Chemistry, 2014, 289, 25031-25040.	3.4	35
17	Synthesis of methyl 5-S-alkyl-5-thio-d-arabinofuranosides and evaluation of their antimycobacterial activity. Bioorganic and Medicinal Chemistry, 2008, 16, 5672-5682.	3.0	34
18	Synthesis and evaluation of new 2-aminothiophenes against Mycobacterium tuberculosis. Organic and Biomolecular Chemistry, 2016, 14, 6119-6133.	2.8	33

DONALD R RONNING

#	Article	IF	CITATIONS
19	Neutron structures of the <i>Helicobacter pylori</i> 5′-methylthioadenosine nucleosidase highlight proton sharing and protonation states. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13756-13761.	7.1	31
20	The carboxy-terminal portion of TnsC activates the Tn7 transposase through a specific interaction with TnsA. EMBO Journal, 2004, 23, 2972-2981.	7.8	29
21	Enzyme–ligand interactions that drive active site rearrangements in the <i>Helicobacter pylori</i> 5′â€methylthioadenosine/ <i>S</i> â€adenosylhomocysteine nucleosidase. Protein Science, 2010, 19, 2498-25	1ð: ⁶	29
22	Synthesis of a C-phosphonate mimic of maltose-1-phosphate and inhibition studies on Mycobacterium tuberculosis ClgE. Bioorganic and Medicinal Chemistry, 2014, 22, 1404-1411.	3.0	28
23	A FRET-Based Fluorogenic Trehalose Dimycolate Analogue for Probing Mycomembrane-Remodeling Enzymes of Mycobacteria. ACS Omega, 2019, 4, 4348-4359.	3.5	28
24	Exploring Covalent Allosteric Inhibition of Antigen 85C from Mycobacterium tuberculosis by Ebselen Derivatives. ACS Infectious Diseases, 2017, 3, 378-387.	3.8	26
25	A coupled assay measuring Mycobacterium tuberculosis antigen 85C enzymatic activity. Analytical Biochemistry, 2009, 385, 120-127.	2.4	25
26	Characterization of Tetrahydrolipstatin and Stereoderivatives on the Inhibition of Essential <i>Mycobacterium tuberculosis</i> Lipid Esterases. Biochemistry, 2018, 57, 2383-2393.	2.5	25
27	Antigen 85C-mediated acyl-transfer between synthetic acyl donors and fragments of the arabinan. Glycoconjugate Journal, 2009, 26, 589-596.	2.7	24
28	Synthesis of a Poly-hydroxypyrolidine-Based inhibitor ofMycobacterium tuberculosisGlgE. Journal of Organic Chemistry, 2014, 79, 9444-9450.	3.2	24
29	Structural basis for lipid binding and mechanism of the Mycobacterium tuberculosis Rv3802 phospholipase. Journal of Biological Chemistry, 2018, 293, 1363-1372.	3.4	24
30	Design, synthesis and biological evaluation of sugar-derived esters, α-ketoesters and α-ketoamides as inhibitors for Mycobacterium tuberculosis antigen 85C. Molecular BioSystems, 2009, 5, 945.	2.9	23
31	Design, Synthesis, and X-ray Analysis of a Glycoconjugate Bound to Mycobacterium tuberculosis Antigen 85C. Bioconjugate Chemistry, 2012, 23, 2403-2416.	3.6	23
32	Synthesis of 2-deoxy-2,2-difluoro-α-maltosyl fluoride and its X-ray structure in complex with Streptomyces coelicolor GlgEI-V279S. Organic and Biomolecular Chemistry, 2015, 13, 7542-7550.	2.8	20
33	Reduction of Feedback Inhibition in Homoserine Kinase (ThrB) of <i>Corynebacterium glutamicum</i> Enhances <scp>l</scp> -Threonine Biosynthesis. ACS Omega, 2018, 3, 1178-1186.	3.5	19
34	Mycolyltransferase from Mycobacterium tuberculosis in covalent complex with tetrahydrolipstatin provides insights into antigen 85 catalysis. Journal of Biological Chemistry, 2018, 293, 3651-3662.	3.4	16
35	Crystal Structures of the <i>Helicobacter pylori</i> MTAN Enzyme Reveal Specific Interactions between <i>S</i> -Adenosylhomocysteine and the 5′-Alkylthio Binding Subsite. Biochemistry, 2012, 51, 9763-9772.	2.5	13
36	Crystal structures of Mycobacterium tuberculosis GlgE and complexes with non-covalent inhibitors. Scientific Reports, 2015, 5, 12830.	3.3	13

DONALD R RONNING

#	Article	IF	CITATIONS
37	Synthesis and in Vitro Characterization of Trehaloseâ€Based Inhibitors of Mycobacterial Trehalose 6â€Phosphate Phosphatases. ChemBioChem, 2019, 20, 260-269.	2.6	13
38	Biochemical and microbiological evaluation of <i>N</i> -aryl urea derivatives against mycobacteria and mycobacterial hydrolases. MedChemComm, 2019, 10, 1197-1204.	3.4	11
39	Reversible Ligand-Induced Dissociation of a Tryptophan-Shift Mutant of Phosphofructokinase from Bacillus stearothermophilus,. Biochemistry, 2002, 41, 12967-12974.	2.5	10
40	Direct Detection of Products from <i>S</i> -Adenosylmethionine-Dependent Enzymes Using a Competitive Fluorescence Polarization Assay. Analytical Chemistry, 2018, 90, 1740-1747.	6.5	8
41	The mycobacterial antigens 85 complex – from structure to function and beyond: Response. Trends in Microbiology, 2000, 8, 441.	7.7	7
42	Zwitterionic pyrrolidene-phosphonates: inhibitors of the glycoside hydrolase-like phosphorylase Streptomyces coelicolor GlgEl-V279S. Organic and Biomolecular Chemistry, 2017, 15, 3884-3891.	2.8	5
43	Stereoselective synthesis of a 4-âº-glucoside of valienamine and its X-ray structure in complex with Streptomyces coelicolor GlgE1-V279S. Scientific Reports, 2021, 11, 13413.	3.3	3
44	Targeted Amino Acid Substitution Overcomes Scale-Up Challenges with the Human C5a-Derived Decapeptide Immunostimulant EP67. ACS Infectious Diseases, 2020, 6, 1169-1181.	3.8	2
45	Total Synthesis of Tetrahydrolipstatin, Its Derivatives, and Evaluation of Their Ability to Potentiate Multiple Antibiotic Classes against Mycobacterium Species. ACS Infectious Diseases, 2021, 7, 2876-2888.	3.8	2
46	Inhibitors of Mycobacterium tuberculosis EgtD target both substrate binding sites to limit hercynine production. Scientific Reports, 2021, 11, 22240.	3.3	1
47	Structural features for substrate recognition by bacterial 5′â€methylthioadenosine nucleosidase. FASEB Journal, 2012, 26, lb247.	0.5	Ο
48	Ebselen: a covalent inhibitor of the Antigen 85 complex from Mycobacterium tuberculosis. FASEB Journal, 2013, 27, 560.4.	0.5	0
49	Structural and enzymatic study of GlgE, a validated antiâ€ŧubercular drug target. FASEB Journal, 2013, 27, 560.11.	0.5	Ο
50	Structureâ€based drug design targeting the malty sweet Mycobacterium tuberculosis GlgE. FASEB Journal, 2018, 32, 531.24.	0.5	0