Ren Cai

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8418208/ren-cai-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,585 50 23 54 h-index g-index citations papers 9.8 4.83 3,079 57 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
54	Plasmon-Enhanced Electrochemiluminescence of PTP-Decorated Eu MOF-Based Pt-Tipped Au Bimetallic Nanorods for the Lincomycin Assay <i>ACS Applied Materials & Decorated European (Control of the Lincomycin Assay)</i> . <i>ACS Applied Materials & Decorated European (Control of the Lincomycin Assay)</i> .	9.5	6
53	Highly Stable 3D Supercuboids to 2D ZnSe Nanosheets: Formation for a High-Efficiency Catalysis System <i>Journal of Physical Chemistry Letters</i> , 2022 , 1855-1862	6.4	1
52	Novel Dual-Signal Electrochemiluminescence Aptasensor Involving the Resonance Energy Transform System for Kanamycin Detection <i>Analytical Chemistry</i> , 2022 ,	7.8	3
51	A High-Wet-Strength Biofilm for Readable and Highly Sensitive Humidity Sensors. <i>Nano Letters</i> , 2021 , 21, 9030-9037	11.5	3
50	Aptamer-Pendant DNA Tetrahedron Nanostructure Probe for Ultrasensitive Detection of Tetracycline by Coupling Target-Triggered Rolling Circle Amplification. <i>ACS Applied Materials & Interfaces</i> , 2021 , 13, 19695-19700	9.5	20
49	Rapid water-responsive shape memory films for smart resistive bending sensors. <i>Nano Today</i> , 2021 , 38, 101202	17.9	7
48	A Hydrophobic Sisal Cellulose Microcrystal Film for Fire Alarm Sensors. <i>Nano Letters</i> , 2021 , 21, 2104-21	10 1.5	13
47	Plasmonic AuPt@CuS Heterostructure with Enhanced Synergistic Efficacy for Radiophotothermal Therapy. <i>Journal of the American Chemical Society</i> , 2021 , 143, 16113-16127	16.4	15
46	Two-dimensional intermetallic PtBi/Pt core/shell nanoplates overcome tumor hypoxia for enhanced cancer therapy. <i>Nanoscale</i> , 2021 , 13, 14245-14253	7.7	1
45	Tumor microenvironment (TME)-activatable circular aptamer-PEG as an effective hierarchical-targeting molecular medicine for photodynamic therapy. <i>Biomaterials</i> , 2020 , 246, 119971	15.6	29
44	Generalized preparation of Au NP @ Ni(OH)2 yolk-shell NPs and their enhanced catalytic activity. <i>Nano Energy</i> , 2020 , 71, 104542	17.1	16
43	Human serum albumin templated MnO nanosheets as an efficient biomimetic oxidase for biomolecule sensing. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 11090-11095	7.3	12
42	On-Site Colorimetric Detection of Cholesterol Based on Polypyrrole Nanoparticles. <i>ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. <i>ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Applied Materials & Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS App</i></i>	9.5	26
41	Aptamer-Directed Protein-Specific Multiple Modifications of Membrane Glycoproteins on Living Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 37845-37850	9.5	15
40	Highly Sensitive MicroRNA Detection by Coupling Nicking-Enhanced Rolling Circle Amplification with MoS Quantum Dots. <i>Analytical Chemistry</i> , 2020 , 92, 13588-13594	7.8	50
39	Free-standing 2D nanorafts by assembly of 1D nanorods for biomolecule sensing. <i>Nanoscale</i> , 2019 , 11, 12169-12176	7.7	28
38	Spherically Directed Synthesis and Enhanced Cellular Internalization of Metal-Crosslinked DNA Micelles. <i>CheM</i> , 2019 , 5, 913-928	16.2	10

(2015-2019)

37	3D halos assembled from FeO/Au NPs with enhanced catalytic and optical properties. <i>Nanoscale</i> , 2019 , 11, 20968-20976	7.7	10
36	Generalized Preparation of Two-Dimensional Quasi-nanosheets via Self-assembly of Nanoparticles. Journal of the American Chemical Society, 2019 , 141, 1725-1734	16.4	22
35	Facile approach to prepare HSA-templated MnO nanosheets as oxidase mimic for colorimetric detection of glutathione. <i>Talanta</i> , 2019 , 195, 40-45	6.2	53
34	Comprehensive Regression Model for Dissociation Equilibria of Cell-Specific Aptamers. <i>Analytical Chemistry</i> , 2018 , 90, 10487-10493	7.8	2
33	Cross-Linked Aptamer-Lipid Micelles for Excellent Stability and Specificity in Target-Cell Recognition. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11589-11593	16.4	24
32	Constructing Smart Protocells with Built-In DNA Computational Core to Eliminate Exogenous Challenge. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6912-6920	16.4	31
31	Cross-Linked Aptamerlipid Micelles for Excellent Stability and Specificity in Target-Cell Recognition. <i>Angewandte Chemie</i> , 2018 , 130, 11763-11767	3.6	6
30	Self-Assembled Aptamer-Grafted Hyperbranched Polymer Nanocarrier for Targeted and Photoresponsive Drug Delivery. <i>Angewandte Chemie</i> , 2018 , 130, 17294-17298	3.6	23
29	Self-Assembled Aptamer-Grafted Hyperbranched Polymer Nanocarrier for Targeted and Photoresponsive Drug Delivery. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 17048-17052	16.4	92
28	CoreBhell HA-AuNPs@SiNPs Nanoprobe for Sensitive Fluorescence Hyaluronidase Detection and Cell Imaging. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 16555-16562	8.3	22
27	Free-Floating 2D Nanosheets with a Superlattice Assembled from FeO Nanoparticles for Peroxidase-Mimicking Activity. <i>ACS Applied Nano Materials</i> , 2018 , 1, 5389-5395	5.6	7
26	Aptasensor with Expanded Nucleotide Using DNA Nanotetrahedra for Electrochemical Detection of Cancerous Exosomes. <i>ACS Nano</i> , 2017 , 11, 3943-3949	16.7	264
25	Selective Imaging and Inactivation of Bacteria over Mammalian Cells by Imidazolium-Substituted Polythiophene. <i>Chemistry of Materials</i> , 2017 , 29, 6389-6395	9.6	64
24	Fabrication of Ultrathin Zn(OH) Nanosheets as Drug Carriers. <i>Nano Research</i> , 2016 , 9, 2520-2530	10	9
23	Three Dimensional Multipod Superstructure based on Cu(OH) as a Highly Efficient Nanozyme. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 4657-4661	7.3	22
22	A Facile Process for the Preparation of Three-Dimensional Hollow Zn(OH)2 Nanoflowers at Room Temperature. <i>Chemistry - A European Journal</i> , 2016 , 22, 11143-7	4.8	3
21	DNA micelle flares: a study of the basic properties that contribute to enhanced stability and binding affinity in complex biological systems. <i>Chemical Science</i> , 2016 , 7, 6041-6049	9.4	30
20	Single Nanoparticle to 3D Supercage: Framing for an Artificial Enzyme System. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13957-63	16.4	92

19	Controlled Synthesis of Ultrathin Lanthanide Oxide Nanosheets and Their Promising pH-Controlled Anticancer Drug Delivery. <i>Chemistry - A European Journal</i> , 2015 , 21, 11954-60	4.8	16
18	DNA Aptamer Based Nanodrugs: Molecular Engineering for Efficiency. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 2084-94	4.5	31
17	MS2 (M = Co and Ni) Hollow Spheres with Tunable Interiors for High-Performance Supercapacitors and Photovoltaics. <i>Advanced Functional Materials</i> , 2014 , 24, 2155-2162	15.6	362
16	Synthesis of porous, hollow metal MCO(3) (M=Mn, Co, Ca) microstructures and adsorption properties thereof. <i>Chemistry - A European Journal</i> , 2014 , 20, 421-5	4.8	22
15	Hollow Spheres: MS2 (M = Co and Ni) Hollow Spheres with Tunable Interiors for High-Performance Supercapacitors and Photovoltaics (Adv. Funct. Mater. 15/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 2154-2154	15.6	14
14	Carbon buffered-transition metal oxidenanoparticlegraphene hybrid nanosheets as high-performance anode materials for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6901-6907	13	27
13	In situ growth of NiCo(2)S(4) nanosheets on graphene for high-performance supercapacitors. <i>Chemical Communications</i> , 2013 , 49, 10178-80	5.8	347
12	Solvothermal-induced conversion of one-dimensional multilayer nanotubes to two-dimensional hydrophilic VOx nanosheets: synthesis and water treatment application. <i>ACS Applied Materials & Amp; Interfaces</i> , 2013 , 5, 10389-94	9.5	14
11	Synthesis of cobalt phosphides and their application as anodes for lithium ion batteries. <i>ACS Applied Materials & District Materials &</i>	9.5	154
10	Multiwalled carbon nanotubes 205 integrated composite with nanosized architecture as a cathode material for high performance lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 15459	13	63
9	Monodispersed Ag nanoparticles loaded on the PVP-assisted synthetic Bi2O2CO3 microspheres with enhanced photocatalytic and supercapacitive performances. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7630	13	93
8	Immobilization of plant polyphenol stabilized-Sn nanoparticles onto carbon nanotubes and their application in rechargeable lithium ion batteries. <i>RSC Advances</i> , 2013 , 3, 5310	3.7	9
7	Synthesis of porous amorphous FePO4 nanotubes and their lithium storage properties. <i>Chemistry - A European Journal</i> , 2013 , 19, 1568-72	4.8	30
6	Controlled synthesis of double-wall a-FePO4 nanotubes and their LIB cathode properties. <i>Small</i> , 2013 , 9, 1036-41	11	19
5	Radiation induced graft polymerization of a fluorinated acrylate onto fabric. <i>Radiation Physics and Chemistry</i> , 2012 , 81, 1354-1356	2.5	20
4	Synthesis of CuxS/Cu Nanotubes and Their Lithium Storage Properties. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 12468-12474	3.8	82
3	Laundering durability of superhydrophobic cotton fabric. <i>Advanced Materials</i> , 2010 , 22, 5473-7	24	243
2	Multifunctional Shape Memory Films for a Flexible Electrical Sensor. <i>Macromolecular Materials and Engineering</i> ,2100580	3.9	0

Green synthesis of Au@WSe2 hybrid nanostructures with the enhanced peroxidase-like activity for sensitive colorimetric detection of glucose. *Nano Research*,1

10

7