Ping Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8417751/publications.pdf

Version: 2024-02-01

15 papers	410 citations	9 h-index	996975 15 g-index
15	15	15	319 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Core-shell ZnO@Cu2O encapsulated Ag NPs nanocomposites for photooxidation-adsorption of iodide anions under visible light. Separation and Purification Technology, 2021, 262, 118328.	7.9	28
2	Silver-decorated ZIF-8 derived ZnO concave nanocubes for efficient photooxidation-adsorption of iodide anions: An in-depth experimental and theoretical investigation. Journal of Solid State Chemistry, 2021, 297, 122039.	2.9	18
3	Cu-Zn bimetal ZIFs derived nanowhisker zero-valent copper decorated ZnO nanocomposites induced oxygen activation for high-efficiency iodide elimination. Journal of Hazardous Materials, 2021, 416, 126097.	12.4	25
4	Hierarchically mesoporous mixed copper oxide/calcined layered double hydroxides composites for iodide high-efficiency elimination. Journal of Solid State Chemistry, 2021, 303, 122509.	2.9	9
5	Rapid and reversible adsorption of radioactive iodide from wastewaters by green and low-cost palygorskite-based microspheres. Journal of Radioanalytical and Nuclear Chemistry, 2020, 325, 303-313.	1.5	5
6	Enhanced Uptake of Iodide from Solutions by Hollow Cu-Based Adsorbents. Materials, 2018, 11, 769.	2.9	13
7	Synthesis of Cu/Cu2O hydrides for enhanced removal of iodide from water. Journal of Hazardous Materials, 2017, 328, 21-28.	12.4	90
8	Bimetallic AgCu/Cu2O hybrid for the synergetic adsorption of iodide from solution. Chemosphere, 2017, 180, 317-325.	8.2	40
9	Visible Light Excited Catalysis and Reusability Performances of TiO ₂ @Pr:Y ₂ SiO ₅ Upconversion Materials. Journal of Nanomaterials, 2017, 2017, 1-8.	2.7	4
10	AgII doped MIL-101 and its adsorption of iodine with high speed in solution. Journal of Solid State Chemistry, 2016, 237, 274-283.	2.9	69
11	Enhanced uptake of iodide on Ag@Cu2O nanoparticles. Chemosphere, 2016, 164, 396-403.	8.2	85
12	Assessment on the Collection Efficiency of an Aerosol Sampler in Micro and Nanoparticles Environment. Key Engineering Materials, 2014, 609-610, 483-488.	0.4	1
13	Upconversion Luminescence and Photodegradation Performances of Pr Doped Y2SiO5Nanomaterials. Journal of Nanomaterials, 2013, 2013, 1-6.	2.7	5
14	Distribution of Nanoparticle Number Concentrations at a Nano-TiO2 Plant. Aerosol and Air Quality Research, 2012, 12, 934-940.	2.1	12
15	Distribution Characteristics of nano-TiO2 Aerosol in the Workplace. Aerosol and Air Quality Research, 2011, 11, 466-472.	2.1	6