Fabrizio Caldera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8416925/publications.pdf Version: 2024-02-01

FARDIZIO CALDEDA

#	Article	IF	CITATIONS
1	Evolution of Cyclodextrin Nanosponges. International Journal of Pharmaceutics, 2017, 531, 470-479.	5.2	131
2	The application of nanosponges to cancer drug delivery. Expert Opinion on Drug Delivery, 2014, 11, 931-941.	5.0	98
3	Acute and Repeated Dose Toxicity Studies of Different β-Cyclodextrin-Based Nanosponge Formulations. Journal of Pharmaceutical Sciences, 2015, 104, 1856-1863.	3.3	93
4	History of Cyclodextrin Nanosponges. Polymers, 2020, 12, 1122.	4.5	91
5	Molecularly imprinted cyclodextrin nanosponges for the controlled delivery of L-DOPA: perspectives for the treatment of Parkinson's disease. Expert Opinion on Drug Delivery, 2016, 13, 1671-1680.	5.0	77
6	Effect of the Cross-Linking Density on the Swelling and Rheological Behavior of Ester-Bridged β-Cyclodextrin Nanosponges. Materials, 2021, 14, 478.	2.9	75
7	Nanosponge-Based Composite Gel Polymer Electrolyte for Safer Li-O2 Batteries. Polymers, 2021, 13, 1625.	4.5	73
8	Encapsulation of coriander essential oil in cyclodextrin nanosponges: A new strategy to promote its use in controlled-release active packaging. Innovative Food Science and Emerging Technologies, 2019, 56, 102177.	5.6	62
9	Preparation of functionalized cotton fabrics by means of melatonin loaded β-cyclodextrin nanosponges. Carbohydrate Polymers, 2016, 142, 24-30.	10.2	59
10	Comparative Evaluation of Solubility, Cytotoxicity and Photostability Studies of Resveratrol and Oxyresveratrol Loaded Nanosponges. Pharmaceutics, 2019, 11, 545.	4.5	56
11	Novel cyclodextrin nanosponges for delivery of calcium in hyperphosphatemia. International Journal of Pharmaceutics, 2013, 456, 95-100.	5.2	51
12	In Vitro Enhanced Skin Permeation and Retention of Imiquimod Loaded in β-Cyclodextrin Nanosponge Hydrogel. Pharmaceutics, 2019, 11, 138.	4.5	51
13	Investigation of Cyclodextrin-Based Nanosponges for Solubility and Bioavailability Enhancement of Rilpivirine. AAPS PharmSciTech, 2018, 19, 2358-2369.	3.3	50
14	Microâ€Mesoporous Carbons from Cyclodextrin Nanosponges Enabling Highâ€Capacity Silicon Anodes and Sulfur Cathodes for Lithiated Siâ€S Batteries. Chemistry - A European Journal, 2022, 28, .	3.3	48
15	Tuning structural parameters for the optimization of drug delivery performance of cyclodextrin-based nanosponges. Expert Opinion on Drug Delivery, 2017, 14, 331-340.	5.0	46
16	Evaluation of solubility enhancement, antioxidant activity, and cytotoxicity studies of kynurenic acid loaded cyclodextrin nanosponge. Carbohydrate Polymers, 2019, 224, 115168.	10.2	46
17	Phase-controlled supramolecular photochirogenesis in cyclodextrin nanosponges. Chemical Communications, 2013, 49, 3510.	4.1	44
18	Glutathione Bioresponsive Cyclodextrin Nanosponges. ChemPlusChem, 2016, 81, 439-443.	2.8	42

FABRIZIO CALDERA

#	Article	IF	CITATIONS
19	Eco-Friendly β-cyclodextrin and Linecaps Polymers for the Removal of Heavy Metals. Polymers, 2019, 11, 1658.	4.5	40
20	Glutathione-responsive cyclodextrin-nanosponges as drug delivery systems for doxorubicin: Evaluation of toxicity and transport mechanisms in the liver. Toxicology in Vitro, 2020, 65, 104800.	2.4	37
21	Cyclodextrin nanosponge-sensitized enantiodifferentiating photoisomerization of cyclooctene and 1,3-cyclooctadiene. Beilstein Journal of Organic Chemistry, 2012, 8, 1305-1311.	2.2	36
22	Glutathione/pH-responsive nanosponges enhance strigolactone delivery to prostate cancer cells. Oncotarget, 2018, 9, 35813-35829.	1.8	36
23	Paclitaxel-Loaded Nanosponges Inhibit Growth and Angiogenesis in Melanoma Cell Models. Frontiers in Pharmacology, 2019, 10, 776.	3.5	36
24	Encapsulation of apple polyphenols in β-CD nanosponges. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 80, 85-92.	1.6	35
25	β-Cyclodextrin Nanosponges as Multifunctional Ingredient in Water-Containing Semisolid Formulations for Skin Delivery. Journal of Pharmaceutical Sciences, 2014, 103, 3941-3949.	3.3	34
26	Molecularly Imprinted Membranes. Membranes, 2012, 2, 440-477.	3.0	33
27	Pyromellitic dianhydride crosslinked cyclodextrin nanosponges for curcumin controlled release; formulation, physicochemical characterization and cytotoxicity investigations. Journal of Microencapsulation, 2019, 36, 715-727.	2.8	33
28	In Situ Synthesis of MIL-100(Fe) at the Surface of Fe3O4@AC as Highly Efficient Dye Adsorbing Nanocomposite. International Journal of Molecular Sciences, 2019, 20, 5612.	4.1	33
29	Micro porous carbon spheres from cyclodextrin nanosponges. Microporous and Mesoporous Materials, 2016, 235, 178-184.	4.4	32
30	α-Cyclodextrin and α-Cyclodextrin Polymers as Oxygen Nanocarriers to Limit Hypoxia/Reoxygenation Injury: Implications from an In Vitro Model. Polymers, 2018, 10, 211.	4.5	31
31	Nanosponges as protein delivery systems: Insulin, a case study. International Journal of Pharmaceutics, 2020, 590, 119888.	5.2	31
32	Poly(vinylalcohol)-borate hydrogels with improved features for the cleaning of cultural heritage surfaces. Heritage Science, 2015, 3, .	2.3	30
33	Immunotherapy of experimental melanoma with ICOS-Fc loaded in biocompatible and biodegradable nanoparticles. Journal of Controlled Release, 2020, 320, 112-124.	9.9	30
34	Sustainable synthesis of cyclodextrin-based polymers by exploiting natural deep eutectic solvents. Green Chemistry, 2020, 22, 5806-5814.	9.0	29
35	Synthesis and characterization of a hyper-branched water-soluble Î ² -cyclodextrin polymer. Beilstein Journal of Organic Chemistry, 2014, 10, 2586-2593.	2.2	28
36	Mechanochemical green synthesis of hyper-crosslinked cyclodextrin polymers. Beilstein Journal of Organic Chemistry, 2020, 16, 1554-1563.	2.2	28

FABRIZIO CALDERA

#	Article	IF	CITATIONS
37	Cyclodextrin Monomers and Polymers for Drug Activity Enhancement. Polymers, 2021, 13, 1684.	4.5	27
38	Cyclodextrin nanosponge for the GSH-mediated delivery of Resveratrol in human cancer cells. Nanotheranostics, 2021, 5, 197-212.	5.2	26
39	Cyclic Oligosaccharides as Active Drugs, an Updated Review. Pharmaceuticals, 2020, 13, 281.	3.8	26
40	Stabilization and Anticancer Enhancing Activity of the Peptide Nisin by Cyclodextrin-Based Nanosponges against Colon and Breast Cancer Cells. Polymers, 2022, 14, 594.	4.5	23
41	Rapid temperature-assisted synthesis of nanoporous γ-cyclodextrin-based metal–organic framework for selective CO2 adsorption. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 99, 245-253.	1.6	22
42	Magnetic Composites of Dextrin-Based Carbonate Nanosponges and Iron Oxide Nanoparticles with Potential Application in Targeted Drug Delivery. Nanomaterials, 2022, 12, 754.	4.1	22
43	Peroxidase-encapsulated cyclodextrin nanosponge immunoconjugates as a signal enhancement tool in optical and electrochemical assays. Analyst, The, 2014, 139, 375-380.	3.5	21
44	Preparation and characterization of cyclodextrin nanosponges for bortezomib delivery. Expert Opinion on Drug Delivery, 2020, 17, 1807-1816.	5.0	21
45	Porous and worm-like titanium dioxide nanostructures from PS-b-PEO block copolymer micellar solutions. Materials Chemistry and Physics, 2011, 128, 166-171.	4.0	20
46	Controlled Release of DEET Loaded on Fibrous Mats from Electrospun PMDA/Cyclodextrin Polymer. Molecules, 2018, 23, 1694.	3.8	19
47	Activity of Ailanthus altissima (Mill.) Swingle Extract as a Potential Bioherbicide for Sustainable Weed Management in Horticulture. Agronomy, 2020, 10, 965.	3.0	19
48	Lifespan extension in Caenorhabditis elegans by oxyresveratrol supplementation in hyper-branched cyclodextrin-based nanosponges. International Journal of Pharmaceutics, 2020, 589, 119862.	5.2	18
49	Nutraceutical Concepts and Dextrin-Based Delivery Systems. International Journal of Molecular Sciences, 2022, 23, 4102.	4.1	18
50	Cyclodextrins as Anti-inflammatory Agents: Basis, Drugs and Perspectives. Biomolecules, 2021, 11, 1384.	4.0	17
51	On the Interactions of Melatonin/β-Cyclodextrin Inclusion Complex: A Novel Approach Combining Efficient Semiempirical Extended Tight-Binding (xTB) Results with Ab Initio Methods. Molecules, 2021, 26, 5881.	3.8	16
52	Drug-Encapsulated Cyclodextrin Nanosponges. Methods in Molecular Biology, 2021, 2207, 247-283.	0.9	16
53	Dual confinement of sulphur with rGO-wrapped microporous carbon from β-cyclodextrin nanosponges as a cathode material for Li–S batteries. Journal of Solid State Electrochemistry, 2017, 21, 3411-3420.	2.5	15
54	PEEKâ€WC/Nanosponge Membranes for Lithiumâ€Anode Protection in Rechargeable Liâ^'O 2 Batteries. ChemElectroChem, 2018, 5, 1599-1605.	3.4	14

FABRIZIO CALDERA

#	Article	IF	CITATIONS
55	Solvent- and phase-controlled photochirogenesis. Enantiodifferentiating photoisomerization of (Z)-cyclooctene sensitized by cyclic nigerosylnigerose-based nanosponges crosslinked by pyromellitate. Organic and Biomolecular Chemistry, 2015, 13, 2905-2912.	2.8	13
56	Sustainable N-containing biochars obtained at low temperatures as sorbing materials for environmental application: Municipal biowaste-derived substances and nanosponges case studies. Journal of Analytical and Applied Pyrolysis, 2018, 134, 606-613.	5.5	13
57	Microfibers of microporous carbon obtained from the pyrolysis of electrospun β-cyclodextrin/pyromellitic dianhydride nanosponges. Polymer Degradation and Stability, 2019, 161, 277-282.	5.8	13
58	Biological Effect Evaluation of Glutathione-Responsive Cyclodextrin-Based Nanosponges: 2D and 3D Studies. Molecules, 2020, 25, 2775.	3.8	13
59	New Poly(β-Cyclodextrin)/Poly(Vinyl Alcohol) Electrospun Sub-Micrometric Fibers and Their Potential Application for Wastewater Treatments. Nanomaterials, 2020, 10, 482.	4.1	13
60	Photochirogenic nanosponges: phase-controlled enantiodifferentiating photoisomerization of (Z)-cyclooctene sensitized by pyromellitate-crosslinked linear maltodextrin. RSC Advances, 2017, 7, 17184-17192.	3.6	11
61	Functionalized dextrin-based nanosponges as effective carriers for the herbicide ailanthone. Industrial Crops and Products, 2021, 164, 113346.	5.2	11
62	A physicochemical, thermodynamical, structural and computational evaluation of kynurenic acid/cyclodextrin complexes. Food Chemistry, 2021, 356, 129639.	8.2	10
63	Developing Novel Hydroxypropyl-β-Cyclodextrin-Based Nanosponges as Carriers for Anticancer Hydrophobic Agents: Overcoming Limitations of Host–Guest Complexes in a Comparative Evaluation. Pharmaceutics, 2022, 14, 1059.	4.5	10
64	Oneâ€step facile process to obtain insoluble polysaccharides fibrous mats from electrospinning of waterâ€soluble PMDA/cyclodextrin polymer. Journal of Applied Polymer Science, 2018, 135, 46490.	2.6	9
65	Cyclodextrin-Based Nanosponges as Perse Antimicrobial Agents Increase the Activity of Natural Antimicrobial Peptide Nisin. Pharmaceutics, 2022, 14, 685.	4.5	8
66	Cyclic Nigerosyl-Nigerose as Oxygen Nanocarrier to Protect Cellular Models from Hypoxia/Reoxygenation Injury: Implications from an In Vitro Model. International Journal of Molecular Sciences, 2021, 22, 4208.	4.1	7
67	Preparation of Microspheres and Monolithic Microporous Carbons from the Pyrolysis of Template-Free Hyper-Crosslinked Oligosaccharides Polymer. Molecules, 2020, 25, 3034.	3.8	4
68	Glutathione Bioresponsive Cyclodextrin Nanosponges. ChemPlusChem, 2016, 81, 434-434.	2.8	3
69	NADES-derived beta cyclodextrin-based polymers as sustainable precursors to produce sub-micrometric cross-linked mats and fibrous carbons. Polymer Degradation and Stability, 2022, 202, 110040.	5.8	3
70	Ecosafe nanomaterials for environmental remediation. , 2020, , 383-405.		2
71	Strategies to Develop Cyclodextrin-Based Nanosponges for Smart Drug Delivery. , 0, , .		2
72	Cyclodextrin-Based Nanosponges and Proteins. Encyclopedia, 2022, 2, 752-760.	4.5	2

#	Article	IF	CITATIONS
73	Preparation and Carbonization of Glucose and Pyromellitic Dianhydride Crosslinked Polymers. Journal of Carbon Research, 2021, 7, 56.	2.7	0