Xipeng Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8416922/publications.pdf

Version: 2024-02-01

759233 642732 26 638 12 23 citations h-index g-index papers 26 26 26 450 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multiscale Attention Aggregation Network for 2D Vessel Segmentation. , 2022, , .		O
2	Single-branch self-supervised learning with hybrid tasks. Computers and Electrical Engineering, 2022, 102, 108168.	4.8	5
3	Research on plant disease identification based on CNN. Cognitive Robotics, 2022, 2, 155-163.	5.4	19
4	Full-Resolution Network and Dual-Threshold Iteration for Retinal Vessel and Coronary Angiograph Segmentation. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4623-4634.	6.3	36
5	Histopathological Tissue Segmentation of Lung Cancer with Bilinear CNN and Soft Attention. BioMed Research International, 2022, 2022, 1-10.	1.9	8
6	Multi-feature embedded learning SVM for cloud detection in remote sensing images. Computers and Electrical Engineering, 2022, 102, 108177.	4.8	6
7	Region- and Pixel-Level Multi-Focus Image Fusion through Convolutional Neural Networks. Mobile Networks and Applications, 2021, 26, 40-56.	3.3	11
8	Identification of Multi-Class Drugs Based on Near Infrared Spectroscopy and Bidirectional Generative Adversarial Networks. Sensors, 2021, 21, 1088.	3.8	9
9	A Feature Extraction and Classification Method to Forecast the PM2.5 Variation Trend Using Candlestick and Visual Geometry Group Model. Atmosphere, 2021, 12, 570.	2.3	4
10	Multiscale Anchor-Free Region Proposal Network for Pedestrian Detection. Wireless Communications and Mobile Computing, 2021, 2021, 1-12.	1.2	1
11	Dynamic adaptive residual network for liver CT image segmentation. Computers and Electrical Engineering, 2021, 91, 107024.	4.8	56
12	Color correction and adaptive contrast enhancement for underwater image enhancement. Computers and Electrical Engineering, 2021, 91, 106981.	4.8	44
13	Curriculum Self-supervised Learning for Weakly-supervised Histopathological Image Segmentation. , 2021, , .		0
14	Multi-task deep learning for fine-grained classification and grading in breast cancer histopathological images. Multimedia Tools and Applications, 2020, 79, 14509-14528.	3.9	56
15	Underwater Image Enhancement Based on Global and Local Equalization of Histogram and Dual-Image Multi-Scale Fusion. IEEE Access, 2020, 8, 128973-128990.	4.2	67
16	A Novel Ray-Casting Algorithm Using Dynamic Adaptive Sampling. Wireless Communications and Mobile Computing, 2020, 2020, 1-12.	1.2	2
17	Classification of Imbalanced Near-infrared Spectroscopy Data. , 2020, , .		1
18	Three Adaptive Sub-Histograms Equalization Algorithm for Maritime Image Enhancement. IEEE Access, 2020, 8, 147983-147994.	4.2	14

XIPENG PAN

#	Article	IF	CITATION
19	On Open-Set, High-Fidelity and Identity-Specific Face Transformation. IEEE Access, 2020, 8, 224643-224653.	4.2	1
20	Multi-manufacturer drug identification based on near infrared spectroscopy and deep transfer learning. Journal of Innovative Optical Health Sciences, 2020, 13 , .	1.0	17
21	A New Region Proposal Network for Far-Infrared Pedestrian Detection. IEEE Access, 2019, 7, 135023-135030.	4.2	11
22	Supervised Dictionary Learning With Regularization for Near-Infrared Spectroscopy Classification. IEEE Access, 2019, 7, 100923-100932.	4.2	5
23	An Accurate Nuclei Segmentation Algorithm in Pathological Image Based on Deep Semantic Network. IEEE Access, 2019, 7, 110674-110686.	4.2	31
24	Single Image Defogging Based on Multi-Channel Convolutional MSRCR. IEEE Access, 2019, 7, 72492-72504.	4.2	71
25	A Survey of Restoration and Enhancement for Underwater Images. IEEE Access, 2019, 7, 182259-182279.	4.2	65
26	Accurate segmentation of nuclei in pathological images via sparse reconstruction and deep convolutional networks. Neurocomputing, 2017, 229, 88-99.	5.9	98