Sandrine Lyonnard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8416828/publications.pdf

Version: 2024-02-01

44 papers 1,453 citations

394421 19 h-index 330143 37 g-index

45 all docs

45 docs citations

45 times ranked

1876 citing authors

#	Article	IF	CITATIONS
1	Quasielastic Neutron Scattering Study of Water Dynamics in Hydrated Nafion Membranes. Journal of Physical Chemistry C, 2007, 111, 3393-3404.	3.1	181
2	Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries. Energy and Environmental Science, 2018, 11, 3298-3309.	30.8	167
3	Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes. Molecular Systems Design and Engineering, 2019, 4, 779-792.	3.4	129
4	A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030+. Advanced Energy Materials, 2022, 12, .	19.5	70
5	Prelithiation of silicon/graphite composite anodes: Benefits and mechanisms for long-lasting Li-lon batteries. Energy Storage Materials, 2020, 29, 190-197.	18.0	63
6	<i>Operando</i> Raman Spectroscopy and Synchrotron X-ray Diffraction of Lithiation/Delithiation in Silicon Nanoparticle Anodes. ACS Nano, 2017, 11, 11306-11316.	14.6	62
7	Water Dynamics in Ionomer Membranes by Field-Cycling NMR Relaxometry. Journal of Physical Chemistry B, 2006, 110, 5439-5444.	2.6	60
8	Nanostructure and Transport Properties of Proton Conducting Self-Assembled Perfluorinated Surfactants: A Bottom-Up Approach toward PFSA Fuel Cell Membranes. Macromolecules, 2015, 48, 6166-6176.	4.8	57
9	Water sub-diffusion in membranes for fuel cells. Scientific Reports, 2017, 7, 8326.	3.3	54
10	Effects of Block Length and Membrane Processing Conditions on the Morphology and Properties of Perfluorosulfonated Poly(arylene ether sulfone) Multiblock Copolymer Membranes for PEMFC. ACS Applied Materials & Diterfaces, 2015, 7, 13808-13820.	8.0	46
11	Unveiling the Ion Conduction Mechanism in Imidazolium-Based Poly(ionic liquids): A Comprehensive Investigation of the Structure-to-Transport Interplay. Macromolecules, 2017, 50, 4309-4321.	4.8	41
12	Multiscale Multiphase Lithiation and Delithiation Mechanisms in a Composite Electrode Unraveled by Simultaneous <i>Operando</i> Small-Angle and Wide-Angle X-Ray Scattering. ACS Nano, 2019, 13, 11538-11551.	14.6	40
13	Synthesis of partially fluorinated poly(arylene ether sulfone) multiblock copolymers bearing perfluorosulfonic functions. Journal of Polymer Science Part A, 2015, 53, 1941-1956.	2.3	39
14	Nanoâ€Architectured Composite Anode Enabling Longâ€Term Cycling Stability for Highâ€Capacity Lithiumâ€Ion Batteries. Small, 2020, 16, e1906812.	10.0	37
15	Disentangling water, ion and polymer dynamics in an anion exchange membrane. Nature Materials, 2022, 21, 555-563.	27.5	32
16	Multi-scale quantification and modeling of aged nanostructured silicon-based composite anodes. Communications Chemistry, 2020, 3, .	4.5	30
17	Imaging Heterogeneous Electrocatalyst Stability and Decoupling Degradation Mechanisms in Operating Hydrogen Fuel Cells. ACS Energy Letters, 2021, 6, 2742-2749.	17.4	26
18	Mechanism of Ionization, Hydration, and Intermolecular H-Bonding in Proton Conducting Nanostructured Ionomers. Journal of Physical Chemistry C, 2014, 118, 25468-25479.	3.1	24

#	Article	IF	CITATIONS
19	Polyaromatic ionomers with a highly hydrophobic backbone and perfluorosulfonic acids for PEMFC. Electrochimica Acta, 2016, 214, 182-191.	5.2	22
20	Controlling Microstructure–Transport Interplay in Highly Phase-Separated Perfluorosulfonated Aromatic Multiblock Ionomers via Molecular Architecture Design. ACS Applied Materials & Interfaces, 2017, 9, 1671-1683.	8.0	21
21	Highly Phase Separated Aromatic lonomers Bearing Perfluorosulfonic Acids by Bottom-up Synthesis: Effect of Cation on Membrane Morphology and Functional Properties. Macromolecules, 2016, 49, 4164-4177.	4.8	20
22	Sub-diffusion and population dynamics of water confined in soft environments. Nanoscale, 2016, 8, 3314-3325.	5.6	20
23	Multiscale Water Dynamics in a Fuel Cell by Operando Quasi Elastic Neutron Scattering. Journal of Physical Chemistry C, 2018, 122, 1103-1108.	3.1	19
24	Data Management Plans: the Importance of Data Management in the BIGâ€MAP Project**. Batteries and Supercaps, 2021, 4, 1803-1812.	4.7	19
25	Accelerating Battery Characterization Using Neutron and Synchrotron Techniques: Toward a Multiâ€Modal and Multiâ€Scale Standardized Experimental Workflow. Advanced Energy Materials, 2022, 12, .	19.5	17
26	Combined Operando High Resolution SANS and Neutron Imaging Reveals in-Situ Local Water Distribution in an Operating Fuel Cell. ACS Applied Energy Materials, 2019, 2, 8425-8433.	5.1	16
27	Impact of ionomer structuration on the performance of bio-inspired noble-metal-free fuel cell anodes. Chem Catalysis, 2021, 1, 88-105.	6.1	14
28	Water confined in self-assembled ionic surfactant nano-structures. Soft Matter, 2015, 11, 2469-2478.	2.7	13
29	Heterogeneous Nanostructural Aging of Fuel Cell Ionomer Revealed by Operando SAXS. ACS Applied Energy Materials, 2019, 2, 3071-3080.	5.1	11
30	In Situ Measurement of Ionomer Water Content and Liquid Water Saturation in Fuel Cell Catalyst Layers by High-Resolution Small-Angle Neutron Scattering. ACS Applied Energy Materials, 2020, 3, 8393-8401.	5.1	11
31	Submicrometer 3D Structural Evidence of Fuel Cell Membrane Heterogeneous Degradation. ACS Macro Letters, 2014, 3, 778-783.	4.8	10
32	Aromatic Copolymer/Nafion Blends Outperforming the Corresponding Pristine Ionomers. ACS Applied Energy Materials, 2018, 1, 355-367.	5.1	10
33	Combining <i>operando</i> X-ray experiments and modelling to understand the heterogeneous lithiation of graphite electrodes. Journal of Materials Chemistry A, 2021, 9, 4281-4290.	10.3	9
34	Best Performing SiGe/Si Coreâ€Shell Nanoparticles Synthesized in One Step for High Capacity Anodes. Batteries and Supercaps, 2019, 2, 970-978.	4.7	8
35	Perfluorosulfonyl Imide versus Perfluorosulfonic Acid Ionomers in Protonâ€Exchange Membrane Fuel Cells at Low Relative Humidity. ChemSusChem, 2020, 13, 590-600.	6.8	8
36	Organic Liquid Crystals as Singleâ€lon Li ⁺ Conductors. ChemSusChem, 2021, 14, 655-661.	6.8	8

3

#	Article	IF	CITATIONS
37	(De)Lithiation and Strain Mechanism in Crystalline Ge Nanoparticles. ACS Nano, 2022, 16, 9819-9829.	14.6	8
38	Neutron imaging of operando proton exchange membrane fuel cell with novel membrane. Journal of Power Sources, 2021, 496, 229836.	7.8	7
39	Tailoring the Proton Conductivity and Microstructure of Block Copolymers by Countercation-Selective Membrane Fabrication. Journal of Physical Chemistry C, 2020, 124, 13071-13081.	3.1	5
40	How do H ₂ oxidation molecular catalysts assemble onto carbon nanotube electrodes? A crosstalk between electrochemical and multi-physical characterization techniques. Chemical Science, 2021, 12, 15916-15927.	7.4	5
41	Influence of Polymer Backbone Fluorination on the Electrochemical Behavior of Single-Ion Conducting Multiblock Copolymer Electrolytes. ACS Macro Letters, 2022, 11, 982-990.	4.8	5
42	Progress in neutron techniques: towards improved polymer electrolyte membranes for energy devices. Journal of Physics Condensed Matter, 2021, 33, 264005.	1.8	3
43	Decoupling polymer, water and ion transport dynamics in ion-selective membranes for fuel cell applications. Journal of Non-Crystalline Solids: X, 2022, 13, 100073.	1.2	3
44	Humidity-Induced Mechanical Behavior and Proton Transport Mechanism in Aromatic Multiblock lonomer Membranes. ACS Applied Energy Materials, 2021, 4, 5809-5820.	5.1	2