
## Mark Shtaif

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8416720/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Kramers–Kronig coherent receiver. Optica, 2016, 3, 1220.                                                                                                                             | 4.8  | 494       |
| 2  | Properties of nonlinear noise in long, dispersion-uncompensated fiber links. Optics Express, 2013, 21, 25685.                                                                        | 1.7  | 310       |
| 3  | Accumulation of nonlinear interference noise in fiber-optic systems. Optics Express, 2014, 22, 14199.                                                                                | 1.7  | 214       |
| 4  | Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission. IEEE<br>Photonics Technology Letters, 2000, 12, 392-394.                                  | 1.3  | 212       |
| 5  | Inter-Channel Nonlinear Interference Noise in WDM Systems: Modeling and Mitigation. Journal of<br>Lightwave Technology, 2015, 33, 1044-1053.                                         | 2.7  | 142       |
| 6  | Modeling of Nonlinear Propagation in Space-Division Multiplexed Fiber-Optic Transmission. Journal of<br>Lightwave Technology, 2016, 34, 36-54.                                       | 2.7  | 140       |
| 7  | Nonlinear propagation in multi-mode fibers in the strong coupling regime. Optics Express, 2012, 20, 11673.                                                                           | 1.7  | 134       |
| 8  | Stokes-space analysis of modal dispersion in fibers with multiple mode transmission. Optics Express, 2012, 20, 11718.                                                                | 1.7  | 133       |
| 9  | The statistics of polarization-dependent loss in optical communication systems. IEEE Photonics Technology Letters, 2002, 14, 313-315.                                                | 1.3  | 128       |
| 10 | Coupled Manakov equations in multimode fibers with strongly coupled groups of modes. Optics Express, 2012, 20, 23436.                                                                | 1.7  | 127       |
| 11 | Kramers–Kronig Receivers for 100-km Datacenter Interconnects. Journal of Lightwave Technology,<br>2018, 36, 79-89.                                                                   | 2.7  | 119       |
| 12 | Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses. IEEE<br>Photonics Technology Letters, 2001, 13, 445-447.                               | 1.3  | 107       |
| 13 | System impact of intra-channel nonlinear effects in highly dispersed optical pulse transmission. IEEE<br>Photonics Technology Letters, 2000, 12, 1633-1635.                          | 1.3  | 86        |
| 14 | Performance degradation in coherent polarization multiplexed systems as a result of polarization dependent loss. Optics Express, 2008, 16, 13918.                                    | 1.7  | 80        |
| 15 | Mean-square magnitude of all orders of polarization mode dispersion and the relation with the bandwidth of the principal states. IEEE Photonics Technology Letters, 2000, 12, 53-55. | 1.3  | 79        |
| 16 | Kramers–Kronig receivers. Advances in Optics and Photonics, 2019, 11, 480.                                                                                                           | 12.1 | 76        |
| 17 | New bounds on the capacity of the nonlinear fiber-optic channel. Optics Letters, 2014, 39, 398.                                                                                      | 1.7  | 72        |
| 18 | Pulse Collision Picture of Inter-Channel Nonlinear Interference in Fiber-Optic Communications.<br>Journal of Lightwave Technology, 2016, 34, 593-607.                                | 2.7  | 70        |

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Analytical solution of wave mixing between short optical pulses in a semiconductor optical amplifier.<br>Applied Physics Letters, 1995, 66, 1458-1460.                        | 1.5 | 65        |
| 20 | Random coupling between groups of degenerate fiber modes in mode multiplexed transmission. Optics<br>Express, 2013, 21, 9484.                                                 | 1.7 | 65        |
| 21 | A Shaping Algorithm for Mitigating Inter-Channel Nonlinear Phase-Noise in Nonlinear Fiber Systems.<br>Journal of Lightwave Technology, 2016, 34, 3884-3889.                   | 2.7 | 64        |
| 22 | Polarization Multiplexing With the Kramers-Kronig Receiver. Journal of Lightwave Technology, 2017,<br>35, 5418-5424.                                                          | 2.7 | 63        |
| 23 | On the capacity of intensity modulated systems using optical amplifiers. IEEE Photonics Technology<br>Letters, 2001, 13, 1029-1031.                                           | 1.3 | 60        |
| 24 | Analysis of intensity interference caused by cross-phase modulation in dispersive optical fibers. IEEE<br>Photonics Technology Letters, 1998, 10, 979-981.                    | 1.3 | 59        |
| 25 | A compensator for the effects of high-order polarization mode dispersion in optical fibers. IEEE<br>Photonics Technology Letters, 2000, 12, 434-436.                          | 1.3 | 55        |
| 26 | Study of the frequency autocorrelation of the differential group delay in fibers with polarization mode dispersion. Optics Letters, 2000, 25, 707.                            | 1.7 | 54        |
| 27 | Loss of polarization entanglement in a fiber-optic system with polarization mode dispersion in one optical path. Optics Letters, 2011, 36, 43.                                | 1.7 | 54        |
| 28 | The delay spread in fibers for SDM transmission: dependence on fiber parameters and perturbations.<br>Optics Express, 2015, 23, 2196.                                         | 1.7 | 54        |
| 29 | Noise spectra of semiconductor optical amplifiers: relation between semiclassical and quantum descriptions. IEEE Journal of Quantum Electronics, 1998, 34, 869-878.           | 1.0 | 52        |
| 30 | The effect of the frequency dependence of PMD on the performance of optical communications systems. IEEE Photonics Technology Letters, 2003, 15, 1369-1371.                   | 1.3 | 51        |
| 31 | 218-Gb/s Single-Wavelength, Single-Polarization, Single-Photodiode Transmission Over 125-km of<br>Standard Singlemode Fiber Using Kramers-Kronig Detection. , 2017, , .       |     | 51        |
| 32 | Nonlinear interference noise in space-division multiplexed transmission through optical fibers.<br>Optics Express, 2017, 25, 13055.                                           | 1.7 | 49        |
| 33 | Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit. IEEE<br>Journal of Quantum Electronics, 1996, 32, 1801-1809.                       | 1.0 | 48        |
| 34 | Intensity impulse response of SDM links. Optics Express, 2015, 23, 5738.                                                                                                      | 1.7 | 45        |
| 35 | Signal-to-Noise-Ratio Degradation Caused by Polarization-Dependent Loss and the Effect of Dynamic<br>Gain Equalization. Journal of Lightwave Technology, 2004, 22, 1856-1871. | 2.7 | 44        |
| 36 | Analytical description of cross-phase modulation in dispersive optical fibers. Optics Letters, 1998, 23, 1191.                                                                | 1.7 | 42        |

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Modeling and performance metrics of MIMO-SDM systems with different amplification schemes in the presence of mode-dependent loss. Optics Express, 2015, 23, 2203. | 1.7 | 40        |
| 38 | Modeling the Bit-Error-Rate Performance of Nonlinear Fiber-Optic Systems. Journal of Lightwave Technology, 2016, 34, 3482-3489.                                   | 2.7 | 40        |
| 39 | Nonlocal compensation of polarization mode dispersion in the transmission of polarization entangled photons. Optics Express, 2011, 19, 1728.                      | 1.7 | 38        |
| 40 | Four-wave mixing among short optical pulses in semiconductor optical amplifiers. IEEE Photonics<br>Technology Letters, 1995, 7, 1001-1003.                        | 1.3 | 37        |
| 41 | The relation between optical duobinary modulation and spectral efficiency in WDM systems. IEEE<br>Photonics Technology Letters, 1999, 11, 712-714.                | 1.3 | 33        |
| 42 | Noise properties of nonlinear semiconductor optical amplifiers. Optics Letters, 1996, 21, 1851.                                                                   | 1.7 | 32        |
| 43 | Cross-phase modulation distortion measurements in multispan WDM systems. IEEE Photonics<br>Technology Letters, 2000, 12, 88-90.                                   | 1.3 | 32        |
| 44 | Crosstalk in WDM systems caused by cross-phase modulation in erbium-doped fiber amplifiers. IEEE<br>Photonics Technology Letters, 1998, 10, 1796-1798.            | 1.3 | 31        |
| 45 | Raman amplification in multimode fibers with random mode coupling. Optics Letters, 2013, 38, 1188.                                                                | 1.7 | 30        |
| 46 | Nonlinear Phase Noise in Phase-Modulated WDM Fiber-Optic Communications. IEEE Photonics<br>Technology Letters, 2004, 16, 1307-1309.                               | 1.3 | 29        |
| 47 | Bit-error rate of optical DPSK in fiber systems by multicanonical Monte Carlo Simulations. IEEE<br>Photonics Technology Letters, 2005, 17, 1355-1357.             | 1.3 | 29        |
| 48 | Large-mode-area fused-fiber combiners, with nearly lowest-mode brightness conservation. Optics<br>Letters, 2011, 36, 2874.                                        | 1.7 | 28        |
| 49 | Roadmap on multimode photonics. Journal of Optics (United Kingdom), 2022, 24, 083001.                                                                             | 1.0 | 27        |
| 50 | Polarization-dependent loss as a waveform-distorting mechanism and its effect on fiber-optic systems.<br>Journal of Lightwave Technology, 2005, 23, 923-930.      | 2.7 | 26        |
| 51 | The Jacobi MIMO Channel. IEEE Transactions on Information Theory, 2013, 59, 2426-2441.                                                                            | 1.5 | 26        |
| 52 | Assessing the Effects of Mode-Dependent Loss in Space-Division Multiplexed Systems. Journal of<br>Lightwave Technology, 2014, 32, 1317-1322.                      | 2.7 | 26        |
| 53 | Kramers–Kronig PAM Transceiver and Two-Sided Polarization-Multiplexed Kramers–Kronig<br>Transceiver. Journal of Lightwave Technology, 2018, 36, 468-475.          | 2.7 | 26        |
| 54 | Secure communication in fiber optic systems via transmission of broad-band optical noise. Optics<br>Express, 2008, 16, 3383.                                      | 1.7 | 24        |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Stokes-Space Analysis of Modal Dispersion of SDM Fibers With Mode-Dependent Loss: Theory and Experiments. Journal of Lightwave Technology, 2020, 38, 1668-1677.                                                  | 2.7 | 24        |
| 56 | Contribution of timing jitter and amplitude distortion to XPM system penalty in WDM systems. IEEE<br>Photonics Technology Letters, 1999, 11, 748-750.                                                            | 1.3 | 23        |
| 57 | The Brownian-bridge method for simulating polarization mode dispersion in optical communications systems. IEEE Photonics Technology Letters, 2003, 15, 51-53.                                                    | 1.3 | 23        |
| 58 | lterative Symbol Recovery for Power-Efficient DC-Biased Optical OFDM Systems. Journal of Lightwave<br>Technology, 2016, 34, 2331-2338.                                                                           | 2.7 | 23        |
| 59 | Kramers-Kronig PAM transceiver. , 2017, , .                                                                                                                                                                      |     | 23        |
| 60 | Polarization-Dependent Loss and Its Effect on the Signal-to-Noise Ratio in Fiber-Optic Systems. IEEE<br>Photonics Technology Letters, 2004, 16, 671-673.                                                         | 1.3 | 21        |
| 61 | Use of space-time coding in coherent polarization-multiplexed systems suffering from polarization-dependent loss. Optics Letters, 2010, 35, 3547.                                                                | 1.7 | 21        |
| 62 | Cross-phase modulation in an L-band EDFA. IEEE Photonics Technology Letters, 1999, 11, 1575-1577.                                                                                                                | 1.3 | 20        |
| 63 | Experimental study of the statistical properties of nonlinearly amplified signals in semiconductor optical amplifiers. IEEE Photonics Technology Letters, 1997, 9, 904-906.                                      | 1.3 | 19        |
| 64 | Information Capacity of Direct Detection Optical Transmission Systems. Journal of Lightwave Technology, 2018, 36, 689-694.                                                                                       | 2.7 | 19        |
| 65 | Calculation of bit error rates in all-optical signal processing applications exploiting nondegenerate few-wave mixing in semiconductor optical amplifiers. Journal of Lightwave Technology, 1996, 14, 2069-2077. | 2.7 | 18        |
| 66 | BER Performance of MDL-Impaired MIMO-SDM Systems With Finite Constellation Inputs. IEEE Photonics<br>Technology Letters, 2014, 26, 1223-1226.                                                                    | 1.3 | 18        |
| 67 | Experimental characterization of nonlinear interference noise as a process of intersymbol interference. Optics Letters, 2018, 43, 1123.                                                                          | 1.7 | 18        |
| 68 | Blind Equalization in Optical Communications Using Independent Component Analysis. Journal of<br>Lightwave Technology, 2013, 31, 2043-2049.                                                                      | 2.7 | 17        |
| 69 | NLIN Mitigation Using Turbo Equalization and an Extended Kalman Smoother. Journal of Lightwave<br>Technology, 2019, 37, 1885-1892.                                                                               | 2.7 | 17        |
| 70 | Single-wavelength, single-polarization, single- photodiode kramers-kronig detection of 440-Gb/s<br>entropy-loaded discrete multitone modulation transmitted over 100-km SSMF. , 2017, , .                        |     | 16        |
| 71 | Kalman-MLSE Equalization for NLIN Mitigation. Journal of Lightwave Technology, 2018, 36, 2541-2550.                                                                                                              | 2.7 | 16        |
| 72 | Beam quality output of a few-modes fiber seeded by an off-center single-mode fiber source. Optics<br>Letters, 2009, 34, 1795.                                                                                    | 1.7 | 14        |

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Reduction of Cross-Phase Modulation-Induced Impairments in Long-Haul WDM Telecommunication<br>Systems Via Spectral Inversion. IEEE Photonics Technology Letters, 2004, 16, 677-679.   | 1.3 | 13        |
| 74 | Balanced Versus Single-Ended Detection of DPSK: Degraded Advantage Due to Fiber Nonlinearities. IEEE<br>Photonics Technology Letters, 2007, 19, 164-166.                              | 1.3 | 13        |
| 75 | Capacity limitations in fiber-optic communication systems as a result of polarization-dependent loss.<br>Optics Letters, 2009, 34, 3613.                                              | 1.7 | 13        |
| 76 | Quantum Limits on the Energy Consumption of Optical Transmission Systems. Journal of Lightwave Technology, 2014, 32, 1853-1860.                                                       | 2.7 | 13        |
| 77 | 4 $	ilde{A}$ — 240 Gb/s Dense WDM and PDM Kramers-Kronig Detection with 125-km SSMF Transmission. , 2017, , .                                                                         |     | 13        |
| 78 | The Enhanced Kramers Kronig Receiver. , 2018, , .                                                                                                                                     |     | 13        |
| 79 | The underaddressed optical multiple-input, multiple-output channel: capacity and outage. Optics<br>Letters, 2012, 37, 3150.                                                           | 1.7 | 12        |
| 80 | Optical implementation of a space–time-trellis code for enhancing the tolerance of systems to polarization-dependent loss. Optics Letters, 2013, 38, 118.                             | 1.7 | 12        |
| 81 | Spatial beam properties of combined lasers' delivery fibers. Optics Letters, 2012, 37, 1412.                                                                                          | 1.7 | 11        |
| 82 | Mitigation of inter-channel nonlinear interference in WDM systems. , 2014, , .                                                                                                        |     | 11        |
| 83 | Transmission in 125-km SMF with 3.9 bit/s/Hz spectral efficiency using a single-drive MZM and a direct-detection Kramers-Kronig receiver without optical CD compensation. , 2018, , . |     | 11        |
| 84 | Correlated Nonlinear Phase-Noise in Multi-Subcarrier Systems: Modeling and Mitigation. Journal of<br>Lightwave Technology, 2020, 38, 1148-1156.                                       | 2.7 | 10        |
| 85 | Study of the two-frequency moment generating function of the PMD vector. IEEE Photonics<br>Technology Letters, 2003, 15, 1713-1715.                                                   | 1.3 | 9         |
| 86 | Improving the Accuracy of Mean DGD Estimates by Analysis of Second-Order PMD Statistics. IEEE<br>Photonics Technology Letters, 2004, 16, 792-794.                                     | 1.3 | 9         |
| 87 | Disjoint detection in polarization multiplexed communication systems affected by polarization dependent loss. Optics Express, 2009, 17, 8173.                                         | 1.7 | 9         |
| 88 | Nonlinear propagation equations in fibers with multiple modes—Transitions between representation bases. APL Photonics, 2019, 4, 022806.                                               | 3.0 | 9         |
| 89 | Correlations and phase noise in NLIN- modelling and system implications. , 2016, , .                                                                                                  |     | 7         |
| 90 | Statistical distribution of polarization-dependent loss in systems characterized by the hinge model.<br>Optics Letters, 2020, 45, 1224.                                               | 1.7 | 7         |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Optoelectronic mixing using a short cavity distributed Bragg reflector laser. Journal of Lightwave<br>Technology, 1998, 16, 443-447.                                                                                | 2.7 | 6         |
| 92  | Ultrahigh Data-Rate Transmission Using a Dense Dispersion Map With Two-Fold Periodicity. IEEE<br>Photonics Technology Letters, 2008, 20, 620-622.                                                                   | 1.3 | 6         |
| 93  | Nonlinear phase and polarization rotation noise in fully loaded WDM systems. , 2015, , .                                                                                                                            |     | 6         |
| 94  | Modeling the evolution of spatial beam parameters in parabolic index fibers. Optics Letters, 2012, 37, 3636.                                                                                                        | 1.7 | 5         |
| 95  | Equalization Methods for Out-of-Band Nonlinearity Mitigation in Fiber-Optic Communications. Applied<br>Sciences (Switzerland), 2019, 9, 511.                                                                        | 1.3 | 5         |
| 96  | An optically triggered oscillator based on wave coupling in a semiconductor optical amplifier. IEEE<br>Journal of Quantum Electronics, 1994, 30, 2188-2193.                                                         | 1.0 | 4         |
| 97  | Noiseless amplification and signal-to-noise ratio in single-sideband transmission. Optics Letters, 2003, 28, 203.                                                                                                   | 1.7 | 4         |
| 98  | Understanding nonlinear phase noise in optical DPSK systems. , 0, , .                                                                                                                                               |     | 4         |
| 99  | Effects of DGE channel bandwidth on nonlinear ULH systems. , 2005, , .                                                                                                                                              |     | 4         |
| 100 | Optical DPASK and DQPSK: a comparative analysis for linear and nonlinear transmission. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 581-588.                                                   | 1.9 | 4         |
| 101 | Propagation effects in few-mode fibers. , 2017, , .                                                                                                                                                                 |     | 4         |
| 102 | Universal Virtual Lab: A Fast and Accurate Simulation Tool for Wideband Nonlinear DWDM Systems.<br>Journal of Lightwave Technology, 2022, 40, 2441-2455.                                                            | 2.7 | 4         |
| 103 | Improved bit-error-rate performance in frequency conversion of high-bit-rate data based on cross<br>gain compression in semiconductor optical amplifiers. IEEE Photonics Technology Letters, 1996, 8,<br>1474-1476. | 1.3 | 3         |
| 104 | PMD penalties in long nonsoliton systems and the effect of inline filtering. IEEE Photonics<br>Technology Letters, 2006, 18, 1179-1181.                                                                             | 1.3 | 3         |
| 105 | Beneficial use of spectral broadening resulting from the nonlinearity of the fiber-optic channel.<br>Optics Letters, 2012, 37, 4458.                                                                                | 1.7 | 3         |
| 106 | Coherent detection with an incoherent local oscillator. Optics Express, 2018, 26, 33970.                                                                                                                            | 1.7 | 3         |
| 107 | Enhancing the Kramers–Kronig receiver via dispersion-based spatial diversity. Optics Letters, 2020, 45,<br>3494.                                                                                                    | 1.7 | 3         |
| 108 | Band splitting and modal dispersion induced by symmetry braking in coupled-resonator slowlight waveguide structures. Optics Express, 2010, 18, 1762.                                                                | 1.7 | 2         |

| #   | Article                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Carrier-envelope phase locking of multi-pulse lasers with an intra-cavity Mach-Zehnder<br>interferometer. Optics Express, 2011, 19, 23202.                             | 1.7 | 2         |
| 110 | Mode-division multiplexing for next-generation optical transport. , 2012, , .                                                                                          |     | 2         |
| 111 | Information rates in the optical nonlinear phase noise channel. , 2013, , .                                                                                            |     | 2         |
| 112 | Use of the Kramers–Kronig receiver with a low-cost dual-drive Mach–Zehnder transmitter. Optics<br>Communications, 2019, 453, 124419.                                   | 1.0 | 2         |
| 113 | Fundamental Limits to the Measurement of the Polarization of Classical Light. Journal of Lightwave Technology, 2021, 39, 2387-2396.                                    | 2.7 | 2         |
| 114 | Modelling of polarization mode dispersion in optical communications systems. Journal of Optical and Fiber Communications Research, 2004, 1, 248-265.                   | 0.5 | 1         |
| 115 | Correction to "Improving the Accuracy of Mean DGD Estimates by Analysis of Second-Order PMD Statistics". IEEE Photonics Technology Letters, 2004, 16, 2398-2398.       | 1.3 | 1         |
| 116 | The effect of strong inline filtering on the amplitude jitter in long optical systems. Journal of<br>Lightwave Technology, 2006, 24, 3097-3102.                        | 2.7 | 1         |
| 117 | Increasing the PDL tolerance of systems by use of the Golden-code. , 2010, , .                                                                                         |     | 1         |
| 118 | Disappearance of polarization entanglement due to the relative orientation of two fiber's PMD vectors. , 2010, , .                                                     |     | 1         |
| 119 | Modeling of linear and nonlinear coupling in multiple-mode fiber optic transmission with MIMO signal processing. , 2012, , .                                           |     | 1         |
| 120 | Approaching fundamental energy consumption limits in optical communications. , 2013, , .                                                                               |     | 1         |
| 121 | Inter-modal nonlinear interference in SDM systems and its impact on information capacity. , 2016, , .                                                                  |     | 1         |
| 122 | Experimental Characterization of the Time Correlation Properties of Nonlinear Interference Noise. , 2017, , .                                                          |     | 1         |
| 123 | Universal Virtual Lab: A Fast and Accurate Simulation Method for Nonlinear DWDM Systems. , 2021, , .                                                                   |     | 1         |
| 124 | Noiseless amplification and signal-to-noise ratio in single-sideband transmission: erratum. Optics<br>Letters, 2003, 28, 1278.                                         | 1.7 | 0         |
| 125 | Optimal optical power for DPASK over a nonlinear fiber-optic channel. , 2005, , .                                                                                      |     | Ο         |
| 126 | The four-frequency autocorrelation function of polarization mode dispersion and its application to measurements. Journal of Lightwave Technology, 2005, 23, 3773-3780. | 2.7 | 0         |

| #   | Article                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | ULH systems with strong filters acting as amplitude regenerators. , 2006, , .                                                |      | 0         |
| 128 | The changing paradigm of terrestrial long-haul transmission system design. , 2008, , .                                       |      | 0         |
| 129 | The role of polarization dependent loss in polarization multiplexed transmission. , 2010, , .                                |      | 0         |
| 130 | Propagation of polarization-entangled photon pairs in optical fibers. , 2010, , .                                            |      | 0         |
| 131 | Abrupt disappearance of entangelement in fibers with polarization mode dispersion. , 2011, , .                               |      | 0         |
| 132 | Modeling the evolution of spatial beam parameters in parabolic index fibers: erratum. Optics Letters, 2013, 38, 1067.        | 1.7  | 0         |
| 133 | Criticality of assumptions in the study of performance degradation caused by mode-dependent loss in SDM systems. , 2014, , . |      | 0         |
| 134 | MSE reduction in digital compensation for non-linear analog channels. , 2014, , .                                            |      | 0         |
| 135 | Ultra high-rate optical key distribution. , 2008, , .                                                                        |      | 0         |
| 136 | Kramers-Kronig coherent receiver. , 2018, , .                                                                                |      | 0         |
| 137 | Kramers–Kronig receivers: erratum. Advances in Optics and Photonics, 2019, 11, 826.                                          | 12.1 | Ο         |