Steven F Abcouwer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8416489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	mTORC1 regulates high levels of protein synthesis in retinal ganglion cells of adult mice. Journal of Biological Chemistry, 2022, 298, 101944.	1.6	2
2	Differential effects of minocycline on microvascular complications in murine models of type 1 and type 2 diabetes. Journal of Translational Science, 2021, 7, .	0.2	4
3	Conditional Knock out of High-Mobility Group Box 1 (HMGB1) in Rods Reduces Autophagy Activation after Retinal Detachment. Cells, 2021, 10, 2010.	1.8	5
4	Diminished retinal complex lipid synthesis and impaired fatty acid β-oxidation associated with human diabetic retinopathy. JCl Insight, 2021, 6, .	2.3	20
5	Inflammatory resolution and vascular barrier restoration after retinal ischemia reperfusion injury. Journal of Neuroinflammation, 2021, 18, 186.	3.1	36
6	Differential Effects of Empagliflozin on Microvascular Complications in Murine Models of Type 1 and Type 2 Diabetes. Biology, 2020, 9, 347.	1.3	19
7	Loss of High-Mobility Group Box 1 (HMGB1) Protein in Rods Accelerates Rod Photoreceptor Degeneration After Retinal Detachment. , 2020, 61, 50.		8
8	All- <i>trans</i> -Retinaldehyde Contributes to Retinal Vascular Permeability in Ischemia Reperfusion. , 2020, 61, 8.		5
9	mTORC1 and mTORC2 expression in inner retinal neurons and glial cells. Experimental Eye Research, 2020, 197, 108131.	1.2	13
10	New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia, 2019, 62, 1539-1549.	2.9	240
11	Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes. Scientific Reports, 2019, 9, 881.	1.6	19
12	Shared and distinct lipid-lipid interactions in plasma and affected tissues in a diabetic mouse model. Journal of Lipid Research, 2018, 59, 173-183.	2.0	38
13	Vitreous Cytokine Expression and a Murine Model Suggest a Key Role of Microglia in the Inflammatory Response to Retinal Detachment. , 2018, 59, 3767.		34
14	Inhibition of Atypical Protein Kinase C Reduces Inflammation-Induced Retinal Vascular Permeability. American Journal of Pathology, 2018, 188, 2392-2405.	1.9	18
15	Developmental and light regulation of tumor suppressor protein PP2A in the retina. Oncotarget, 2018, 9, 1505-1523.	0.8	7
16	Müller Cell–Microglia Cross Talk Drives Neuroinflammation in Diabetic Retinopathy. Diabetes, 2017, 66, 261-263.	0.3	46
17	Protective Effect of a GLP-1 Analog on Ischemia-Reperfusion Induced Blood–Retinal Barrier Breakdown and Inflammation. , 2016, 57, 2584.		41
18	Insulin-like growth factor 1 rescues R28 retinal neurons from apoptotic death through ERK-mediated BimEL phosphorylation independent of Akt. Experimental Eye Research, 2016, 151, 82-95.	1.2	25

STEVEN F ABCOUWER

#	Article	IF	CITATIONS
19	CX3CR1 deficiency accelerates the development of retinopathy in a rodent model of type 1 diabetes. Journal of Molecular Medicine, 2016, 94, 1255-1265.	1.7	32
20	Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight, 2016, 1, e86976.	2.3	188
21	Phosphatase control of 4E-BP1 phosphorylation state is central for glycolytic regulation of retinal protein synthesis. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E546-E556.	1.8	22
22	lschemia–Reperfusion Injury Induces Occludin Phosphorylation/Ubiquitination and Retinal Vascular Permeability in a VEGFR-2-Dependent Manner. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 522-531.	2.4	78
23	Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment. Annals of the New York Academy of Sciences, 2014, 1311, 174-190.	1.8	186
24	mTORC1-Independent Reduction of Retinal Protein Synthesis in Type 1 Diabetes. Diabetes, 2014, 63, 3077-3090.	0.3	24
25	Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury. Journal of Neuroinflammation, 2013, 10, 149.	3.1	104
26	Direct Effects of PPARα Agonists on Retinal Inflammation and Angiogenesis May Explain How Fenofibrate Lowers Risk of Severe Proliferative Diabetic Retinopathy. Diabetes, 2013, 62, 36-38.	0.3	17
27	A Role for Systemic Inflammation in Diabetic Retinopathy. , 2013, 54, 2384.		15
28	Journal of Clinical & Cellular Immunology. Journal of Clinical & Cellular Immunology, 2013, Suppl 1, .	1.5	110
29	Neural inflammation and the microglial response in diabetic retinopathy. Journal of Ocular Biology, Diseases, and Informatics, 2011, 4, 25-33.	0.2	20
30	The Significance of Vascular and Neural Apoptosis to the Pathology of Diabetic Retinopathy. , 2011, 52, 1156.		361
31	An Integrated Approach to Diabetic Retinopathy Research. JAMA Ophthalmology, 2011, 129, 230.	2.6	83
32	Differential Roles of Hyperglycemia and Hypoinsulinemia in Diabetes Induced Retinal Cell Death: Evidence for Retinal Insulin Resistance. PLoS ONE, 2011, 6, e26498.	1.1	62
33	Effects of Ischemic Preconditioning and Bevacizumab on Apoptosis and Vascular Permeability Following Retinal Ischemia–Reperfusion Injury. , 2010, 51, 5920.		70
34	TNF-α Signals Through PKCζ/NF-κB to Alter the Tight Junction Complex and Increase Retinal Endothelial Cell Permeability. Diabetes, 2010, 59, 2872-2882.	0.3	343
35	Regulation of Vascular Endothelial Growth Factor A by Activating Transcription Factor 4. Circulation Research, 2008, 103, e118; author reply e119.	2.0	0
36	Effect of IL- $1\hat{l}^2$ on Survival and Energy Metabolism of R28 and RGC-5 Retinal Neurons. , 2008, 49, 5581.		35

STEVEN F ABCOUWER

#	Article	IF	CITATIONS
37	Activation of NFκB is inhibited by curcumin and related enones. Bioorganic and Medicinal Chemistry, 2006, 14, 2450-2461.	1.4	114
38	Anti-oxidant activities of curcumin and related enones. Bioorganic and Medicinal Chemistry, 2005, 13, 3811-3820.	1.4	256
39	Aberrant Accumulation of Fibulin-3 in the Endoplasmic Reticulum Leads to Activation of the Unfolded Protein Response and VEGF Expression. , 2005, 46, 3973.		70
40	The Oxidative Stressor Arsenite Activates Vascular Endothelial Growth Factor mRNA Transcription by an ATF4-dependent Mechanism. Journal of Biological Chemistry, 2005, 280, 20331-20339.	1.6	112
41	Expression of Angiogenic Factors Vascular Endothelial Growth Factor and Interleukin-8/CXCL8 Is Highly Responsive to Ambient Glutamine Availability. Cancer Research, 2004, 64, 4858-4869.	0.4	105
42	Homocysteine Increases the Expression of Vascular Endothelial Growth Factor by a Mechanism Involving Endoplasmic Reticulum Stress and Transcription Factor ATF4. Journal of Biological Chemistry, 2004, 279, 14844-14852.	1.6	196
43	Expression of the pro-angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 by human breast carcinomas is responsive to nutrient deprivation and endoplasmic reticulum stress. Molecular Cancer, 2004, 3, 4.	7.9	73
44	Induction of Grp78/BiP by Translational Block. Journal of Biological Chemistry, 2003, 278, 37375-37385.	1.6	238
45	Molecular and functional analysis of glutamine uptake in human hepatoma and liver-derived cells. American Journal of Physiology - Renal Physiology, 2002, 283, G1062-G1073.	1.6	77
46	Response of VEGF expression to amino acid deprivation and inducers of endoplasmic reticulum stress. Investigative Ophthalmology and Visual Science, 2002, 43, 2791-8.	3.3	91
47	Mechanisms Governing the Expression of the Enzymes of Glutamine Metabolism—Glutaminase and Glutamine Synthetase. Journal of Nutrition, 2001, 131, 2467S-2474S.	1.3	103
48	Glutamine synthetase expression in muscle is regulated by transcriptional and posttranscriptional mechanisms. American Journal of Physiology - Endocrinology and Metabolism, 1999, 276, E1136-E1145.	1.8	20
49	Identification of glucocorticoid-responsive elements that control transcription of rat glutamine synthetase. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L319-L331.	1.3	11
50	Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing. Physiological Genomics, 1999, 1, 51-62.	1.0	169
51	Glutamine Deprivation Induces the Expression ofGADD45 and GADD153 Primarily by mRNA Stabilization. Journal of Biological Chemistry, 1999, 274, 28645-28651.	1.6	66
52	Effect of dietary glutamate on chemotherapy-induced immunosuppression. Nutrition, 1999, 15, 687-696.	1.1	28
53	Determinants of glutamine dependence and utilization by normal and tumor-derived breast cell lines. , 1998, 176, 166-178.		80
54	Sepsis Increases Lung Glutamine Synthetase Expression in the Tumor-Bearing Host. Journal of Surgical Research, 1998, 78, 18-22.	0.8	8

STEVEN F ABCOUWER

#	Article	IF	CITATIONS
55	Multiwell ¹⁴ CO ₂ -Capture Assay for Evaluation of Substrate Oxidation Rates of Cells in Culture. BioTechniques, 1998, 24, 803-808.	0.8	25
56	Glutamine synthetase expression in rat lung is regulated by protein stability. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L877-L886.	1.3	11
57	INDUCTION OF MUSCLE GLUTAMINE SYNTHETASE GENE EXPRESSION DURING ENDOTOXEMIA IS ADRENAL GLAND DEPENDENT. Shock, 1997, 7, 332-338.	1.0	12
58	Hepatic Glutaminase Gene Expression in the Tumor-Bearing Rat. Journal of Surgical Research, 1997, 69, 33-39.	0.8	4
59	Regulation of glutamine synthetase in human breast carcinoma cells and experimental tumors. Surgery, 1997, 122, 451-464.	1.0	31
60	Glutamine synthetase gene expression in the lungs of endotoxin-treated and adrenalectomized rats. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1997, 273, L1182-L1190.	1.3	10
61	Is the lung an organ of nutrition and metabolism?. Nutrition, 1997, 13, 492.	1.1	Ο
62	Induction of Glutamine Synthetase Expression after Major Burn Injury is Tissue Specific and Temporally Variable. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 42, 421-428.	1.1	14
63	Tissue-specific regulation of glutamine synthetase gene expression in acute pancreatitis is confirmed by using interleukin-1 receptor knockout mice. Surgery, 1996, 120, 255-264.	1.0	17
64	Glutamine as a Regulator of DNA and Protein Biosynthesis in Human Solid Tumor Cell Lines. Annals of Surgery, 1996, 224, 189-197.	2.1	64
65	Induction of Cytokine-Induced Neutrophil Chemoattractant (CINC) mRNA in the Lungs of Septic Rats. Arteriosclerosis, Thrombosis, and Vascular Biology, 1996, 41, 222-230.	1.1	24
66	AMINO ACID METABOLISM AND THE VASCULAR ENDOTHELIUM: REGULATION AND DISEASE IMPLICATIONS. Shock, 1995, 4, 79-88.	1.0	5
67	Glucocorticoids Regulate Rat Glutamine Synthetase Expression in a Tissue-Specific Manner. Journal of Surgical Research, 1995, 59, 59-65.	0.8	58
68	Molecular regulation of lung endothelial glutamine synthetase expression*. Surgery, 1995, 118, 325-335.	1.0	22