
Habib Elhouichet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8416454/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infrared and dielectric studies of amorphous NaPO3-ZnO-V2O5-Er2O3 glasses at room temperature. Journal of the Australian Ceramic Society, 2022, 58, 197-203.	1.1	2
2	Transport Mechanisms and Dielectric Features of Mg-Doped ZnO Nanocrystals for Device Applications. Materials, 2022, 15, 2265.	1.3	16
3	Promising Cr-Doped ZnO Nanorods for Photocatalytic Degradation Facing Pollution. Applied Sciences (Switzerland), 2022, 12, 34.	1.3	14
4	Structural Defect Impact on Changing Optical Response and Raising Unpredicted Ferromagnetic Behaviour in (111) Preferentially Oriented Nanocrystalline NiO Films. Crystals, 2022, 12, 692.	1.0	2
5	Design of iron (Fe)-doped NiCo2O4@ rGO urchin-shaped microspheres with outstanding electrochemical performances for asymmetric supercapacitor. Journal of Energy Storage, 2022, 52, 104619.	3.9	20
6	Low-cost preparation of La4Co3O9 perovskite thin films with distinct absorbance ability and ferromagnetic behaviour. Ceramics International, 2022, , .	2.3	0
7	Investigations of the thermal, structural, and Near-IR emission properties of Ag containing fluorophosphate glasses and their crystallization process. Optical Materials, 2022, 131, 112610.	1.7	5
8	Luminescence improvement of Sm3+ doped fluoro-phosphate glass by silver species. Journal of Non-Crystalline Solids, 2021, 551, 120397.	1.5	16
9	Epitaxial growth and properties study of p-type doped ZnO:Sb by PLD. Superlattices and Microstructures, 2021, 155, 106908.	1.4	14
10	Conduction mechanisms and dielectric constant features of Fe doped ZnO nanocrystals. Ceramics International, 2021, 47, 19106-19114.	2.3	18
11	Synthesis, characterization, and visible-light photocatalytic activity of transition metals doped ZTO nanoparticles. Ceramics International, 2021, 47, 32882-32890.	2.3	8
12	Impact of Ag species on luminescence and spectroscopic properties of Eu3+ doped fluoro-phosphate glasses. Journal of Non-Crystalline Solids, 2021, 570, 120938.	1.5	14
13	Structure and luminescent properties of Sm3+-doped metaphosphate glasses. Optical Materials, 2021, 121, 111571.	1.7	7
14	Effect of Sb, Tb3+ Doping on Optical and Electrical Performances of SnO2 and Si Based Schottky Diodes. Silicon, 2020, 12, 715-722.	1.8	2
15	Processing and physical properties of nanomaterials based Zn-Sn-O elements at various annealing temperatures. Optik, 2020, 203, 164005.	1.4	3
16	Electrical and dielectric properties of Ni doped Zn2SnO4 nanoparticles. Ceramics International, 2020, 46, 28686-28692.	2.3	8
17	Studies of optical properties of ZnO:MgO thin films fabricated by sputtering from home-made stable oversize targets. Optik, 2020, 216, 164934.	1.4	19
18	Processing and Study of Optical and Electrical Properties of (Mg, Al) Co-Doped ZnO Thin Films Prepared by RF Magnetron Sputtering for Photovoltaic Application. Materials, 2020, 13, 2146.	1.3	13

HABIB ELHOUICHET

#	Article	IF	CITATIONS
19	Solar driven photocatalytic properties of Sm3+ doped ZnO nanocrystals. Ceramics International, 2020, 46, 18878-18887.	2.3	32
20	Good optical performances of Eu3+/ Dy3+ / Ag nanoparticles co-doped phosphate glasses induced by plasmonic effects. Journal of Alloys and Compounds, 2019, 806, 1403-1409.	2.8	33
21	Impact of Ag2O Content on the Optical and Spectroscopic Properties of Fluoro-Phosphate Glasses. Materials, 2019, 12, 3516.	1.3	10
22	Improvement of spectroscopic properties and luminescence of Er3+ions in phospho-tellurite glass ceramics by formation of ErPO4 nanocrystals. Journal of Luminescence, 2019, 216, 116753.	1.5	21
23	Effect of Sb doping on the electrical and dielectric properties of ZnO nanocrystals. Ceramics International, 2019, 45, 8000-8007.	2.3	44
24	Growth, structural and optical properties of ZnO-ZnMgO-MgO nanocomposites and their photocatalytic activity under sunlight irradiation. Materials Research Bulletin, 2019, 110, 230-238.	2.7	41
25	Effect of high Fe doping on Raman modes and optical properties of hydrothermally prepared SnO 2 nanoparticles. Materials Science in Semiconductor Processing, 2018, 77, 31-39.	1.9	44
26	Production of acceptor complexes in sol-gel ZnO thin films by Sb doping. Journal of Luminescence, 2018, 196, 11-19.	1.5	35
27	Structural and optical characterization of p-type highly Fe-doped SnO2 thin films and tunneling transport on SnO2:Fe/p-Si heterojunction. Applied Surface Science, 2018, 434, 879-890.	3.1	46
28	Fe-doped SnO2 decorated reduced graphene oxide nanocomposite with enhanced visible light photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 145-155.	2.0	26
29	Spectroscopic properties of Dy 3+ doped ZnO for white luminescence applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 177, 164-169.	2.0	31
30	Effect of mixed sodium and vanadium on the electric and dielectric properties of zinc phosphate glass. Materials Research Bulletin, 2017, 89, 224-231.	2.7	28
31	Co ₂ SnO ₄ nanoparticles as a high performance catalyst for oxidative degradation of rhodamine B dye and pentachlorophenol by activation of peroxymonosulfate. Physical Chemistry Chemical Physics, 2017, 19, 6569-6578.	1.3	48
32	Enhanced photocatalytic activity of Fe doped ZnO nanocrystals under sunlight irradiation. Optik, 2017, 134, 88-98.	1.4	96
33	Reduced graphene oxide as an efficient support for CdS-MoS2 heterostructures for enhanced photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2017, 42, 16449-16458.	3.8	52
34	Coupling between surface plasmon resonance and Sm3+ ions induced enhancement of luminescence properties in fluoro-tellurite glasses. Journal of Luminescence, 2017, 190, 518-524.	1.5	31
35	Investigation of spectroscopic properties of Sm-Eu codoped phosphate glasses. Displays, 2017, 48, 61-67.	2.0	32
36	Ag nanoparticles induced luminescence enhancement of Eu3+ doped phosphate glasses. Journal of Alloys and Compounds, 2017, 705, 550-558.	2.8	79

Навів Егнопіснет

#	Article	IF	CITATIONS
37	Improvement of thermal and spectroscopic behavior of Er3+/Ce3+ co-doped tellurite glass for lasing materials. Optical and Quantum Electronics, 2017, 49, 1.	1.5	3
38	Preparation, characterization of Sb-doped ZnO nanocrystals and their excellent solar light driven photocatalytic activity. Applied Surface Science, 2017, 393, 486-495.	3.1	67
39	Structural and optical properties of Na doped ZnO nanocrystals: Application to solar photocatalysis. Applied Surface Science, 2017, 396, 1528-1538.	3.1	99
40	Iron addition induced tunable band gap and tetravalent Fe ion in hydrothermally prepared SnO2 nanocrystals: Application in photocatalysis. Materials Research Bulletin, 2016, 83, 481-490.	2.7	37
41	Study of ZnO nanoparticles based hybrid nanocomposites for optoelectronic applications. Journal of Applied Physics, 2016, 119, .	1.1	32
42	Hydrothermal synthesis of ZTO/graphene nanocomposite with excellent photocatalytic activity under visible light irradiation. Journal of Colloid and Interface Science, 2016, 473, 66-74.	5.0	25
43	High photocatalytic activity of plasmonic Ag@AgCl/Zn ₂ SnO ₄ nanocomposites synthesized using hydrothermal method. RSC Advances, 2016, 6, 80310-80319.	1.7	11
44	Structural and luminescence properties of (Ba 1â^'x Eu x)MoO 4 powders. Journal of Luminescence, 2016, 179, 230-235.	1.5	29
45	Synthesis, characterization and DFT calculations of electronic and optical properties of CaMoO4. Physica B: Condensed Matter, 2016, 497, 34-38.	1.3	34
46	Study of charge transport in Fe-doped SnO2 nanoparticles prepared by hydrothermal method. Materials Science in Semiconductor Processing, 2016, 52, 46-54.	1.9	30
47	Preparation and characterization of Ni-doped ZnO–SnO2 nanocomposites: Application in photocatalysis. Superlattices and Microstructures, 2016, 91, 225-237.	1.4	43
48	Nano-silver enhanced luminescence of Er ³⁺ ions embedded in tellurite glass, vitro-ceramic and ceramic: impact of heat treatment. RSC Advances, 2016, 6, 31136-31145.	1.7	29
49	Surface plasmon resonance induced Er3+ photoluminescence enhancement in tellurite glass. Journal of Applied Physics, 2015, 117, .	1.1	61
50	Mg doping induced high structural quality of sol–gel ZnO nanocrystals: Application in photocatalysis. Applied Surface Science, 2015, 349, 855-863.	3.1	104
51	Hydrothermal synthesis, phase structure, optical and photocatalytic properties of Zn2SnO4 nanoparticles. Journal of Colloid and Interface Science, 2015, 457, 360-369.	5.0	65
52	Effect of Mn doping on structural, optical and photocatalytic behaviors of hydrothermal Zn1â^'xMnxS nanocrystals. Applied Surface Science, 2015, 351, 1122-1130.	3.1	40
53	Investigations on electrical conductivity and dielectric properties of Na doped ZnO synthesized from sol gel method. Journal of Alloys and Compounds, 2015, 622, 687-694.	2.8	118
54	Judd–Ofelt analysis of spectroscopic properties of Eu3+ doped KLa(PO3)4. Journal of Luminescence, 2015, 157, 21-27.	1.5	89

HABIB ELHOUICHET

#	Article	IF	CITATIONS
55	Silver nanoparticles enhanced luminescence properties of Er3+ doped tellurite glasses: Effect of heat treatment. Journal of Applied Physics, 2014, 116, .	1.1	96
56	Investigations of thermal, structural and optical properties of tellurite glass with WO3 adding. Journal of Non-Crystalline Solids, 2014, 396-397, 1-7.	1.5	104
57	Er–Yb codoped phosphate glasses with improved gain characteristics for an efficient 1.55 µm broadband optical amplifiers. Journal of Luminescence, 2014, 148, 249-255.	1.5	99
58	Physical investigations on MoO3 sprayed thin film for selective sensitivity applications. Ceramics International, 2014, 40, 13427-13435.	2.3	84
59	Radiative parameters of Nd3+-doped titanium and tungsten modified tellurite glasses for 1.06µm laser materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 147, 224-232.	1.1	58
60	Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics. Journal of Luminescence, 2013, 138, 201-208.	1.5	125
61	Enhancement of the intensity ratio of ultraviolet to visible luminescence with increased excitation in ZnO nanoparticles deposited on porous anodic alumina. Journal Physics D: Applied Physics, 2013, 46, 505104.	1.3	24
62	Structural and Luminescence Properties of Highly Crystalline ZnO Nanoparticles Prepared by Sol–Gel Method. Japanese Journal of Applied Physics, 2012, 51, 04DG13.	0.8	12
63	Study of thermal, structural and optical properties of tellurite glass with different TiO2 composition. Journal of Molecular Structure, 2012, 1028, 39-43.	1.8	75
64	Energy transfer induced Eu3+ photoluminescence enhancement in tellurite glass. Journal of Luminescence, 2012, 132, 205-209.	1.5	40
65	Effect of heat treatment on the structural and optical properties of tellurite glasses doped erbium. Journal of Luminescence, 2012, 132, 832-840.	1.5	104
66	Structural and Luminescence Properties of Highly Crystalline ZnO Nanoparticles Prepared by Sol–Gel Method. Japanese Journal of Applied Physics, 2012, 51, 04DG13.	0.8	9
67	Judd–Ofelt analysis and improvement of thermal and optical properties of tellurite glasses by adding P2O5. Journal of Luminescence, 2010, 130, 2394-2401.	1.5	121
68	Study of photoluminescence quenching in Er3+-doped tellurite glasses. Optical Materials, 2010, 32, 743-747.	1.7	80
69	Energy transfer from phosphorescent blue-emitting oxidized porous silicon to rhodamine 110. Applied Physics Letters, 2010, 97, .	1.5	7
70	Optical study of planar waveguides based on oxidized porous silicon impregnated with laser dyes. Journal of Luminescence, 2009, 129, 461-464.	1.5	12
71	Photoluminescence enhancement and stabilisation of porous silicon passivated by iron. Journal of Luminescence, 2008, 128, 1763-1766.	1.5	56
72	Excitation process and photoluminescence properties of Tb3+ and Eu3+ ions in SnO2 and in SnO2: Porous silicon hosts. Journal of Luminescence, 2006, 121, 507-516.	1.5	33

Навів Егнопіснет

#	Article	IF	CITATIONS
73	Structural, optical and electrical properties of porous silicon impregnated with SnO2:Sb. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3349-3353.	0.8	11
74	Photoluminescence mechanisms of Tb3+-doped porous GaP. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1513-1517.	0.8	3
75	High luminescent Eu3 and Tb3 doped SnO2 sol–gel derived films deposited on porous silicon. Physica Status Solidi A, 2003, 197, 350-354.	1.7	10
76	Photoluminescence and structural analysis of terbium doped porous silicon. Physica Status Solidi A, 2003, 197, 360-364.	1.7	2
77	The role of ambient ageing on porous silicon photoluminescence: evidence of phonon contribution. Applied Surface Science, 2002, 191, 11-19.	3.1	18
78	Photoluminescence properties of europium-doped porous silicon nanocomposites. Journal of Luminescence, 2002, 99, 13-17.	1.5	25