Pierpaolo Belardinelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8416413/publications.pdf

Version: 2024-02-01

29 409 12 20 papers citations h-index g-index

29 29 29 456
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Quantifying nanoscale forces using machine learning in dynamic atomic force microscopy. Nanoscale Advances, 2022, 4, 2134-2143.	2.2	15
2	Machine learning to probe modal interaction in dynamic atomic force microscopy. Mechanical Systems and Signal Processing, 2022, 179, 109312.	4.4	5
3	Mode Coupling in Dynamic Atomic Force Microscopy. Physical Review Applied, 2021, 15, .	1.5	8
4	Interrelation of Elasticity and Thermal Bath in Nanotube Cantilevers. Physical Review Letters, 2021, 126, 175502.	2.9	9
5	Second flexural and torsional modes of vibration in suspended microfluidic resonator for liquid density measurements. Journal of Micromechanics and Microengineering, 2020, 30, 055003.	1.5	8
6	High-Frequency Stochastic Switching of Graphene Resonators Near Room Temperature. Nano Letters, 2019, 19, 1282-1288.	4.5	39
7	Robustness of attractors in tapping mode atomic force microscopy. Nonlinear Dynamics, 2019, 97, 1137-1158.	2.7	19
8	Nonlinear dynamic identification of graphene's elastic modulus via reduced order modeling of atomistic simulations. Journal of the Mechanics and Physics of Solids, 2019, 122, 161-176.	2.3	17
9	Inkjetâ€Printed Highâ€∢i>Q Nanocrystalline Diamond Resonators. Small, 2019, 15, e1803774.	5.2	29
10	Global dynamics and integrity of a micro-plate pressure sensor. Communications in Nonlinear Science and Numerical Simulation, 2019, 69, 432-444.	1.7	11
11	Revealing compactness of basins of attraction of multi-DoF dynamical systems. Mechanical Systems and Signal Processing, 2018, 111, 348-361.	4.4	13
12	Seamless variation of isometric and anisometric dynamical integrity measures in basins's erosion. Communications in Nonlinear Science and Numerical Simulation, 2018, 56, 499-507.	1.7	22
13	Stochastic Switching and Reduction of Integrity in Atomic Force Microscopy. , 2018, , .		O
14	Modal analysis for density and anisotropic elasticity identification of adsorbates on microcantilevers. Applied Physics Letters, 2018, 113, .	1.5	6
15	Size- and temperature-dependent bending rigidity of graphene using modal analysis. Carbon, 2018, 139, 334-341.	5.4	42
16	Linear and non-linear vibrations of fluid-filled hollow microcantilevers interacting with small particles. International Journal of Non-Linear Mechanics, 2017, 93, 30-40.	1.4	7
17	Nonlinear dynamics for estimating the tip radius in atomic force microscopy. Applied Physics Letters, 2017, 111, .	1.5	11
18	Improving the Global Analysis of Mechanical Systems via Parallel Computation of Basins of Attraction. Procedia IUTAM, 2017, 22, 192-199.	1.2	11

#	Article	IF	CITATIONS
19	An efficient parallel implementation of cell mapping methods for MDOF systems. Nonlinear Dynamics, 2016, 86, 2279-2290.	2.7	34
20	A first parallel programming approach in basins of attraction computation. International Journal of Non-Linear Mechanics, 2016, 80, 76-81.	1.4	26
21	HPC Methods for Domains of Attraction Computation. , 2015, , .		O
22	Vibration frequency analysis of an electrically-actuated microbeam resonator accounting for thermoelastic coupling effects. International Journal of Dynamics and Control, 2015, 3, 157-172.	1.5	14
23	Fluid damping phenomena in a slender microbeam modelled on nonclassical theory. MATEC Web of Conferences, 2014, 16, 05003.	0.1	O
24	Modeling and Analysis of an Electrically Actuated Microbeam Based on Nonclassical Beam Theory. Journal of Computational and Nonlinear Dynamics, 2014, 9, .	0.7	18
25	A comparison of different semi-analytical techniques to determine the nonlinear oscillations of a slender microbeam. Meccanica, 2014, 49, 1821-1831.	1.2	7
26	Dynamical characteristics of an electrically actuated microbeam under the effects of squeeze-film and thermoelastic damping. International Journal of Engineering Science, 2013, 69, 16-32.	2.7	38
27	The Use of the Strain Gradient Elasticity Theory in the Electrically Actuated Microbeam Problem: An Investigation on the Static and the Dynamic Response. , 2013, , .		O
28	The Homotopy-Analysis Approach for the Dynamical Study of a Microbeam Modeled on the Basis of the Strain-Gradient Theory. , 2013, , .		0
29	Dynamics of a Micro Electrical Mechanical System Subject to Thermoelastic and Squeeze-Film Damping. MATEC Web of Conferences, 2012, 1, 04004.	0.1	O