List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8416015/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles. Applied Physics Letters, 2002, 81, 2845-2847.	3.3	235
2	Facile Fabrication of Agâ^Pd Bimetallic Nanoparticles in Ultrathin TiO2-Gel Films:Â Nanoparticle Morphology and Catalytic Activity. Journal of the American Chemical Society, 2003, 125, 11034-11040.	13.7	223
3	Universal Surfactantâ€Free Strategy for Selfâ€Standing 3D Tremellaâ€Like Pd–M (M = Ag, Pb, and Au) Nanosheets for Superior Alcohols Electrocatalysis. Advanced Functional Materials, 2020, 30, 2000255.	14.9	191
4	Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. Chinese Chemical Letters, 2021, 32, 2108-2116.	9.0	181
5	Colloidal silver catalysts for oxidation of ethylene. Journal of Molecular Catalysis A, 1999, 141, 187-192.	4.8	169
6	Various ligand-stabilized metal nanoclusters as homogeneous and heterogeneous catalysts in the liquid phase. Applied Organometallic Chemistry, 2001, 15, 178-196.	3.5	168
7	Electrochemical synthesis of gold nanoparticles decorated flower-like graphene for high sensitivity detection of nitrite. Journal of Colloid and Interface Science, 2017, 488, 135-141.	9.4	161
8	Oxidation of ethylene catalyzed by colloidal dispersions of poly(sodium acrylate)-protected silver nanoclusters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 169, 59-66.	4.7	156
9	Novel Hybrid Organic Thermoelectric Materials:Threeâ€Component Hybrid Films Consisting of a Nanoparticle Polymer Complex, Carbon Nanotubes, and Vinyl Polymer. Advanced Materials, 2015, 27, 2246-2251.	21.0	155
10	Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite. Journal of Colloid and Interface Science, 2017, 497, 172-180.	9.4	148
11	Sophisticated Construction of Binary PdPb Alloy Nanocubes as Robust Electrocatalysts toward Ethylene Glycol and Glycerol Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 12659-12665.	8.0	142
12	Ultrasonic-assisted synthesis of N-doped graphene-supported binary PdAu nanoflowers for enhanced electro-oxidation of ethylene glycol and glycerol. Electrochimica Acta, 2017, 245, 227-236.	5.2	115
13	Self-supported porous 2D AuCu triangular nanoprisms as model electrocatalysts for ethylene glycol and glycerol oxidation. Journal of Materials Chemistry A, 2017, 5, 15932-15939.	10.3	103
14	Development of paper-based microfluidic analytical device for iron assay using photomask printed with 3D printer for fabrication of hydrophilic and hydrophobic zones on paper by photolithography. Analytica Chimica Acta, 2015, 883, 55-60.	5.4	99
15	Trimetallic nanoparticles having a Au-core structure. Catalysis Today, 2007, 122, 239-244.	4.4	98
16	Hierarchical NiMo Phosphide Nanosheets Strongly Anchored on Carbon Nanotubes as Robust Electrocatalysts for Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 29647-29655.	8.0	82
17	Spontaneous Formation of Core/Shell Bimetallic Nanoparticles:  A Calorimetric Study. Journal of Physical Chemistry B, 2005, 109, 16326-16331.	2.6	78
18	Hollow Au _x Ag/Au core/shell nanospheres as efficient catalysts for electrooxidation of liquid fuels. Nanoscale, 2017, 9, 12996-13003.	5.6	78

YUKIHIDE SHIRAISHI

#	Article	IF	CITATIONS
19	Precursor-mediated size tuning of monodisperse PtRh nanocubes as efficient electrocatalysts for ethylene glycol oxidation. Journal of Materials Chemistry A, 2019, 7, 7891-7896.	10.3	78
20	Dielectric Spectroscopy of Metal Nanoparticle Doped Liquid Crystal Displays Exhibiting Frequency Modulation Response. Journal of Display Technology, 2006, 2, 121-129.	1.2	75
21	In situ nanopores enrichment of Mesh-like palladium nanoplates for bifunctional fuel cell reactions: A joint etching strategy. Journal of Colloid and Interface Science, 2022, 611, 523-532.	9.4	71
22	Glycine-Assisted Fabrication of N-Doped Graphene-Supported Uniform Multipetal PtAg Nanoflowers for Enhanced Ethanol and Ethylene Glycol Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 3176-3184.	6.7	68
23	Facile fabrication of novel PdRu nanoflowers as highly active catalysts for the electrooxidation of methanol. Journal of Colloid and Interface Science, 2017, 505, 1-8.	9.4	67
24	Fast Switching of Frequency Modulation Twisted Nematic Liquid Crystal Display Fabricated by Doping Nanoparticles and Its Mechanism. Japanese Journal of Applied Physics, 2004, 43, 2580-2584.	1.5	63
25	Fabrication of Pd/P nanoparticle networks with high activity for methanol oxidation. Catalysis Science and Technology, 2016, 6, 6441-6447.	4.1	60
26	Facile construction of fascinating trimetallic PdAuAg nanocages with exceptional ethylene glycol and glycerol oxidation activity. Nanoscale, 2017, 9, 17004-17012.	5.6	59
27	Heterogeneous Co(OH) ₂ nanoplates/Co ₃ O ₄ nanocubes enriched with oxygen vacancies enable efficient oxygen evolution reaction electrocatalysis. Nanoscale, 2018, 10, 18468-18472.	5.6	58
28	pH-dependent color change of colloidal dispersions of gold nanoclusters: Effect of stabilizer. European Physical Journal E, 2002, 8, 377-383.	1.6	57
29	Highly sensitive electrochemical determination of Sunset Yellow based on the ultrafine Au-Pd and reduced graphene oxide nanocomposites. Journal of Colloid and Interface Science, 2016, 481, 229-235.	9.4	55
30	Frequency Modulation Response of a Tunable Birefringent Mode Nematic Liquid Crystal Electrooptic Device Fabricated by Doping Nanoparticles of Pd Covered with Liquid-Crystal Molecules. Japanese Journal of Applied Physics, 2002, 41, L1315-L1317.	1.5	48
31	Self-supported nickel–cobalt nanowires as highly efficient and stable electrocatalysts for overall water splitting. Nanoscale, 2018, 10, 18767-18773.	5.6	48
32	Synthesis and characterization of core-shell PdAu convex nanospheres with enhanced electrocatalytic activity for ethylene glycol oxidation. Journal of Alloys and Compounds, 2017, 723, 36-42.	5.5	42
33	Fabrication of Liquid Crystal Sol Containing Capped Agâ^Pd Bimetallic Nanoparticles and Their Electro-Optic Properties. Journal of Physical Chemistry C, 2008, 112, 20284-20290.	3.1	41
34	Effect of additional metal ions on catalyses of polymer-stabilized metal nanoclusters. Journal of Molecular Catalysis A, 2001, 177, 139-147.	4.8	40
35	Engineering Spiny PtFePd@PtFe/Pt Core@Multishell Nanowires with Enhanced Performance for Alcohol Electrooxidation. ACS Applied Materials & amp; Interfaces, 2019, 11, 30880-30886.	8.0	39
36	Preparation and Catalysis of Inverted Core/Shell Structured Pd/Au Bimetallic Nanoparticles. Australian Journal of Chemistry, 2003, 56, 1025.	0.9	36

#	Article	IF	CITATIONS
37	Visible-Light-Driven 3D Dendritic PtAu@Pt Core–Shell Photocatalyst toward Liquid Fuel Electrooxidation. ACS Sustainable Chemistry and Engineering, 2018, 6, 7159-7167.	6.7	36
38	Dielectric Properties of Frequency Modulation Twisted Nematic LCDs Doped with Palladium (Pd) Nanoparticles. Japanese Journal of Applied Physics, 2004, 43, 5425-5429.	1.5	34
39	Microfluidic Paper-based Analytical Device for the Determination of Hexavalent Chromium by Photolithographic Fabrication Using a Photomask Printed with 3D Printer. Analytical Sciences, 2018, 34, 71-74.	1.6	34
40	Synthesis and Catalysis of Polymer-Protected Pd/Ag/Rh Trimetallic Nanoparticles with a Core–Shell Structure. Bulletin of the Chemical Society of Japan, 2007, 80, 1217-1225.	3.2	33
41	Dielectric Properties of Frequency Modulation Twisted Nematic LCDs Doped with Silver Nanoparticles. Japanese Journal of Applied Physics, 2004, 43, 5430-5434.	1.5	32
42	Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation. Applied Surface Science, 2017, 411, 379-385.	6.1	30
43	Eco-friendly and facile synthesis of novel bayberry-like PtRu alloy as efficient catalysts for ethylene glycol electrooxidation. International Journal of Hydrogen Energy, 2017, 42, 20720-20728.	7.1	29
44	Self‣upported Wormâ€like PdAg Nanoflowers as Efficient Electrocatalysts towards Ethylene Glycol Oxidation. ChemElectroChem, 2017, 4, 2527-2534.	3.4	29
45	Effect of quantity of polymer on catalysis and superstructure size of polymer-protected Pt nanoclusters. Inorganica Chimica Acta, 2000, 300-302, 964-969.	2.4	28
46	Highly active and durable flowerlike Pd/Ni(OH) ₂ catalyst for the electrooxidation of ethanol in alkaline medium. RSC Advances, 2016, 6, 72722-72727.	3.6	28
47	Sophisticated Construction of Hollow Au–Ag–Cu Nanoflowers as Highly Efficient Electrocatalysts toward Ethylene Glycol Oxidation. ACS Sustainable Chemistry and Engineering, 2017, 5, 10490-10498.	6.7	27
48	Solvent-mediated length tuning of ultrathin platinum–cobalt nanowires for efficient electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 24418-24424.	10.3	26
49	Hierarchical branched platinum–copper tripods as highly active and stable catalysts. Nanoscale, 2018, 10, 8246-8252.	5.6	25
50	Novel Nanodispersed Polymer Complex, Poly(nickel 1,1,2,2-ethenetetrathiolate): Preparation and Hybridization for n-Type of Organic Thermoelectric Materials. Chemistry Letters, 2015, 44, 1185-1187.	1.3	24
51	1D alloy ultrafine Pt–Fe nanowires as efficient electrocatalysts for alcohol electrooxidation in alkaline media. Nanoscale, 2018, 10, 16468-16473.	5.6	24
52	Conformation of β-Cyclodextrin-Aromatic Carboxylate Inclusion Complex in Aqueous Solution. Polymer Journal, 1996, 28, 91-94.	2.7	22
53	Pt Islands on 3 D Nutâ€like PtAg Nanocrystals for Efficient Formic Acid Oxidation Electrocatalysis. ChemSusChem, 2018, 11, 1056-1062.	6.8	20
54	Shape-controlled PdSn alloy as superior electrocatalysts for alcohol oxidation reactions. Journal of the Taiwan Institute of Chemical Engineers, 2019, 101, 167-176.	5.3	20

#	Article	IF	CITATIONS
55	Improvement of stability of n-type super growth CNTs by hybridization with polymer for organic hybrid thermoelectrics. Synthetic Metals, 2017, 225, 81-85.	3.9	19
56	Hybrid-Type Organic Thermoelectric Materials Containing Nanoparticles as a Carrier Transport Promoter. Journal of Electronic Materials, 2017, 46, 3207-3214.	2.2	17
57	Thermostability of Hybrid Thermoelectric Materials Consisting of Poly(Ni-ethenetetrathiolate), Polyimide and Carbon Nanotubes. Materials, 2017, 10, 824.	2.9	17
58	Surface plasmon enhanced ethylene glycol electrooxidation based on hollow platinum-silver nanodendrites structures. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 316-322.	5.3	17
59	Electrocatalysis for proton reduction by polypyridyl platinum complexes dispersed in a polymer membrane. European Polymer Journal, 2001, 37, 753-761.	5.4	16
60	Construct 3D networked Au-Cu nanowires for enhanced plasmon-driven catalytic ethylene glycol oxidation through visible light irradiation. Journal of Power Sources, 2018, 399, 59-65.	7.8	16
61	Development of ethenetetrathiolate hybrid thermoelectric materials consisting of cellulose acetate and semiconductor nanomaterials. Japanese Journal of Applied Physics, 2016, 55, 02BB02.	1.5	15
62	Fabrication of reduced graphene oxide–bimetallic Pd@Au nanocomposites for simultaneous determination of ascorbic acid, dopamine and uric acid. RSC Advances, 2016, 6, 92502-92509.	3.6	15
63	Dielectric Properties of Twisted Nematic Liquid Crystal Displays Fabricated by Doping Ag-Pd Metal Nanoparticles Having A Long Term Stability. Molecular Crystals and Liquid Crystals, 2005, 441, 143-152.	0.9	14
64	Highly enhanced ethanol electrocatalytic activity of PdPb network nanocomposites achieved by a small amount platinum modification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 502, 13-18.	4.7	14
65	Surfactant-Wrapped n-Type Organic Thermoelectric Carbon Nanotubes for Long-Term Air Stability and Power Characteristics. ACS Applied Electronic Materials, 2022, 4, 1153-1162.	4.3	14
66	Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices. Journal of Molecular Liquids, 2018, 267, 303-307.	4.9	13
67	Particle size effects of PtAg nanoparticles on the catalytic electrooxidation of liquid fuels. Inorganic Chemistry Frontiers, 2018, 5, 1174-1179.	6.0	13
68	Development of carbon nanotube organic thermoelectric materials using cyclodextrin polymer: control of semiconductor characteristics by the solvent effect. Japanese Journal of Applied Physics, 2020, 59, SDDD05.	1.5	13
69	Enhancement of p-type thermoelectric power factor by low-temperature calcination in carbon nanotube thermoelectric films containing cyclodextrin polymer and Pd. Applied Physics Letters, 2021, 118, .	3.3	13
70	Selective synthesis of 2,6-naphthalenedicarboxylic acid by use of cyclodextrin as catalyst. Journal of Molecular Catalysis A, 1999, 139, 149-158.	4.8	12
71	Palladium Nanoparticles Covered with Liquid-Crystalline Molecules. Preparation and Electro-Optic Properties of Liquid-Crystal Displays Doped with Palladium Nanoparticles Kobunshi Ronbunshu, 2002, 59, 753-759.	0.2	12
72	Improved Thermoelectric Behavior of Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) Using Poly(<i>N</i> -vinyl-2-pyrrolidone)-coated GeO ₂ Nanoparticles. Chemistry Letters, 2017, 46, 933-936.	1.3	12

#	Article	IF	CITATIONS
73	One-step synthesis of 4,4′-biphenyldicarboxylic acid from biphlenyl using cyclodextrin as catalyst. Reactive and Functional Polymers, 1998, 36, 99-102.	4.1	11
74	Ethylene Glycol Electrooxidation Based on Pentangle‣ike PtCu Nanocatalysts. Chemistry - an Asian Journal, 2018, 13, 626-630.	3.3	11
75	Visible-light-driven trimetallic Pt-Ag-Ni alloy nanoparticles for efficient nanoelectrocatalytic oxidation of alcohols. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 616-624.	5.3	11
76	Green Route for Fabrication of Water-Treatable Thermoelectric Generators. Energy Material Advances, 2022, 2022, .	11.0	11
77	Selective Carboxylation of Benzoic Acid Using Cyclodextrin as Mediator. Polymer Journal, 1996, 28, 619-626.	2.7	10
78	An active catalyst system for proton reduction composed of a bipyridyl platinum complex and a polymer membrane. Macromolecular Chemistry and Physics, 2000, 201, 102-106.	2.2	10
79	SELF-ORGANIZATION OF METAL NANOPARTICLES AND ITS APPLICATION TO SYNTHESES OF Pd/Ag/Rh TRIMETALLIC NANOPARTICLE CATALYSTS WITH TRIPLE CORE/SHELL STRUCTURES. International Journal of Nanoscience, 2002, 01, 397-401.	0.7	10
80	Dispersion of carbon nanotubes by poly(Ni-ethenetetrathiolate) for organic thermoelectric hybrid materials. Japanese Journal of Applied Physics, 2016, 55, 02BB07.	1.5	10
81	Highly active electrooxidation of ethylene glycol enabled by pinecone-like Pd–Au–Ag nanocatalysts. Journal of the Taiwan Institute of Chemical Engineers, 2018, 83, 64-73.	5.3	10
82	Conformation of β-Cyclodextrin-2-Naphthalenecarboxylate Inclusion Complex in Aqueous Solution. Polymer Journal, 1995, 27, 1064-1067.	2.7	9
83	Highly Time-Resolved Atmospheric Observations Using a Continuous Fine Particulate Matter and Element Monitor. ACS Earth and Space Chemistry, 2017, 1, 580-590.	2.7	9
84	Syntheses of Titanium Butoxide Tris(polyfluoroalkanoate) and Surface Modification of Calcium Carbonate. Bulletin of the Chemical Society of Japan, 1991, 64, 1648-1651.	3.2	8
85	Selective synthesis of 4,4′-biphenyldicarboxylic acid using cyclodextrin as catalyst. Macromolecular Rapid Communications, 1995, 16, 31-34.	3.9	8
86	Syntheses of poly(cyclodextrin)-stabilised metal nanoparticles and their quenching abilities of active oxygen species. Supramolecular Chemistry, 2011, 23, 195-198.	1.2	8
87	Fast Electroâ€Optic Switching of Twisted Nematic LCD Doped with Cyclodextrin Capped Silica Nanoparticles. Macromolecular Symposia, 2012, 317-318, 28-33.	0.7	8
88	Highâ€Quality Platinum–Iron Nanodendrites with a Multibranched Architecture as Efficient Electrocatalysts for the Ethanol Oxidation Reaction. ChemCatChem, 2018, 10, 2195-2199.	3.7	8
89	Enhancement of the electrical conductivity of defective carbon nanotube sheets for organic hybrid thermoelectrics by deposition of Pd nanoparticles. Materials Advances, 2020, 1, 2926-2936.	5.4	8
90	Highly-stable n-type Carbon Nanotube Material under Accelerated Aging Conditions: Conjunctive Effect of Hydrazine Derivatives and Commodity Polymers. Chemistry Letters, 2019, 48, 1109-1111.	1.3	7

YUKIHIDE SHIRAISHI

#	Article	IF	CITATIONS
91	Preparation and Catalysis of Polymer-Protected Coinage Metal Nanoclusters Kobunshi Ronbunshu, 2000, 57, 346-355.	0.2	6
92	One-Step Synthesis of Terephthalic Acid from Benzene in Water Using Cyclodextrin as Catalyst. Chemistry Letters, 2000, 29, 828-829.	1.3	6
93	Preparation and Electrooptic Properties of Liquid Crystal Devices Doped with Cucurbituril-protected Gold Nanowires. Chemistry Letters, 2012, 41, 1160-1162.	1.3	6
94	Preparation of Gaâ€ZnO Nanoparticles Using Microwave and Ultrasonic Irradiation, and the Application of Poly(3,4â€ethylenedioxythiophene)â€poly(styrenesulfonate) Hybrid Thermoelectric Films. ChemistrySelect, 2019, 4, 6800-6804.	1.5	6
95	n-Type carbon nanotube sheets for high in-plane ZT values in double-doped electron-donating graft copolymers containing diphenylhydrazines. Polymer Journal, 2021, 53, 1281-1286.	2.7	6
96	Cu-ion-induced n- to p-type switching in organic thermoelectric polyazacycloalkane/carbon nanotubes. Materials Advances, 2022, 3, 373-380.	5.4	6
97	One-step synthesis of 2,6-naphthalenedicarboxylic acid from naphthalene using cyclodextrin as catalyst. Macromolecular Rapid Communications, 1995, 16, 697-701.	3.9	5
98	Regioselective carboxylation of aromatic compounds using cyclodextrin as mediator. Reactive and Functional Polymers, 2007, 67, 1115-1128.	4.1	5
99	Improvement of the Performance of Liquid Crystal Displays by Doping with Supramoleculeâ€Protected Metal Nanoparticles. Israel Journal of Chemistry, 2012, 52, 908-916.	2.3	5
100	Durable n-type carbon nanotubes double-doped with 1,8-diazabicyclo[5.4.0]undec-7-ene and polyamidoamine dendrimers. Diamond and Related Materials, 2021, 120, 108656.	3.9	5
101	Two-Dimensional Patterning of Nanoparticles Using Dissipative Structures. Molecular Crystals and Liquid Crystals, 2001, 371, 123-126.	0.3	4
102	Preparation and Catalysis of Poly (.BETAcyclodextrin)-Stabilized Palladium Nanoparticles. Kobunshi Ronbunshu, 2007, 64, 74-76.	0.2	4
103	Narrowâ€gap fieldâ€sequential TNâ€LCD with and without nanoparticle doping. Journal of the Society for Information Display, 2011, 19, 787-792.	2.1	4
104	Construction and Electro-Optic Properties of Liquid-Crystal Display Doped by Rhodium Nanoparticles. Journal of Nanoscience and Nanotechnology, 2012, 12, 396-402.	0.9	4
105	Zirconia Nanocolloids Having a Nanospace of Poly(cyclodextrin): Preparation and Application to Liquid Crystal Devices. Journal of Nanoscience and Nanotechnology, 2014, 14, 2217-2224.	0.9	4
106	Effect of Particle Size on Electro-Optic Properties of Liquid Crystal Devices Doped with γ-Cyclodextrin Stabilized Barium Titanate Nanoparticles. Molecular Crystals and Liquid Crystals, 2015, 611, 100-108.	0.9	4
107	Organic Hybrid Thermoelectric Materials Containing Nano-dispersed Poly(nickel) Tj ETQq1 1 0.784314 rgBT /Ov	erlock 10 ⁻	Tf 50 102 Td
108	P-123: Influence of Metal Nanoparticle on Electro-Optic Response of Dual Frequency Nematic Liquid Crystal. Digest of Technical Papers SID International Symposium, 2003, 34, 696.	0.3	3

7

#	Article	IF	CITATIONS
109	P-87: FM-LCDs Fabricated by Doping Ag Nanoparticles with Fast Switching Speed in Milli-seconds and Submilli-seconds. Digest of Technical Papers SID International Symposium, 2004, 35, 586.	0.3	3
110	Fast electro-optic switching of frequency modulation TN-LCDs fabricated by doping nanoparticles and their mechanism. , 2004, , .		3
111	Fast switching of frequency modulation twisted nematic liquid crystal display fabricated by doping nanoparticles and its mechanism (Invited Paper). , 2005, , .		3
112	Electroâ€Optic Function of Liquid Crystal Displays Doped with Poly(γâ€cyclodextrin)â€Protected ZrO ₂ /Au Nanoparticles. Macromolecular Symposia, 2016, 364, 56-61.	0.7	3
113	Low-Energy Structures of Ligand Passivated Si Nanoclusters:  Theoretical Investigation of Si ₂ L ₄ and Si ₁₀ L ₁₆ (L = H, CH ₃ , OH, and F). Journal of Physical Chemistry C, 2008, 112, 1819-1824.	3.1	2
114	Pd nanoparticles on zeolite imidazolide framework-8: Preparation, characterization, and evaluation of fixed-bed hydrogenation activity toward isomeric nitrophenols. Colloids and Interface Science Communications, 2021, 43, 100446.	4.1	2
115	Various ligandâ€stabilized metal nanoclusters as homogeneous and heterogeneous catalysts in the liquid phase. Applied Organometallic Chemistry, 2001, 15, 178-196.	3.5	2
116	P-121: Equivalent Circuit Analysis of TN - LCDs Doped with Metal Nanoparticles for Fast Response. Digest of Technical Papers SID International Symposium, 2005, 36, 760.	0.3	1
117	Corrections to "Dielectric Spectroscopy of Metal Nanoparticle Doped Liquid Crystal Displays Exhibiting Frequency Modulation Response― Journal of Display Technology, 2006, 2, 418-418.	1.2	1
118	Optical properties of NTN-FSC-LCD and ECB cells with the doping of nanoparticles. Proceedings of SPIE, 2013, , .	0.8	1
119	Electro-optic properties of liquid crystal devices doped with cucurbit(6)uril-protected zirconia nanowires. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 90-94.	4.7	1
120	Analysis of Major Inorganic Ion Components of Atmospheric Particulate Matter in Sanyo Onoda, Yamaguchi, Japan. Bunseki Kagaku, 2015, 64, 775-782.	0.2	1
121	Preparation and Electro-Optic Properties of Liquid Crystal Devices Doped with Supramolecule-Stabilized Rhodium Nanoparticles. Kobunshi Ronbunshu, 2016, 73, 183-186.	0.2	1
122	Metallic Colloids: Catalysis. , 2016, , 4233-4241.		1
123	Improved Thermoelectric Behavior of Super-Growth Carbon Nanotube Using Tetrathiafulvalene-Tetracyanoquinodimethane Nanoparticles. Materials Science Forum, 2020, 990, 209-214.	0.3	1
124	Sensitive Determination of Hexavalent Chromium Using a Microfluidic Paper-based Analytical Device with Solid Phase Extraction. Bunseki Kagaku, 2021, 70, 379-383.	0.2	1
125	Variation of PM _{2.5} through an Analysis of Components in Atmospheric Particulate Matter in Sanyo Onoda, Yamaguchi, Japan from FY 2013 to FY 2016. Bunseki Kagaku, 2018, 67, 355-361.	0.2	1
126	Combination of nanoparticles and carbon nanotubes for organic hybrid thermoelectrics. Pure and Applied Chemistry, 2020, 92, 967-976.	1.9	1

#	Article	IF	CITATIONS
127	HPLC Fluorescence Method for Eugenols in Basil Products Derivatized with DIBI. Chemical and Pharmaceutical Bulletin, 2022, 70, 37-42.	1.3	1
128	Synthesis and catalysis of polymer-stabilized Ag and Ag/Pd colloids. Studies in Surface Science and Catalysis, 2001, 132, 371-374.	1.5	0
129	P-158: Fast Switching of Narrow-gap TN-LCDs Embedded with New Nanoparticles and Their Application to FSC-LCDs. Digest of Technical Papers SID International Symposium, 2011, 42, 1697-1699.	0.3	0
130	Preparation of Ag/Rh and Ag/Pd Bimetallic Nano-Organized Systems by Mixing Two Kinds of Monometallic Nanoparticles. Kobunshi Ronbunshu, 2011, 68, 345-348.	0.2	0
131	Green digital signage using nanoparticle embedded narrow-gap field sequential TN-LCDs. , 2012, , .		0
132	Preparation and Application of Poly(beta-cyclodextrin)-Protected Zirconia Nanoparticles by Ultrasonic/Microwave Method. Kobunshi Ronbunshu, 2014, 71, 467-470.	0.2	0
133	Optical homogenizing effects in nanoparticle-embedded liquid-crystal devices. Proceedings of SPIE, 2017, , .	0.8	0
134	Development of Sulfur Oxides Analysis in the Atmosphere by an Alkaline Filter Paper Method without Toxic Substances. Bunseki Kagaku, 2018, 67, 743-747.	0.2	0
135	Interpretation of frequency modulation TN-LCD embedded with metal nanoparticles using equivalent circuit analysis. AIP Advances, 2020, 10, .	1.3	0
136	Enhancement of optical output and low-power consumption in nanoparticle-embedded liquid crystal devices. , 2019, , 197-208.		0
137	Characterization and Thermoelectric Behavior of Super-growth Carbon Nanotube Films Co-loaded with ZnO and Ag Colloids. Electrochemistry, 2020, 88, 356-358.	1.4	0