List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8415724/publications.pdf Version: 2024-02-01

YANOING WU

#	Article	IF	CITATIONS
1	Nonvolatile Logic and Ternary Contentâ€Addressable Memory Based on Complementary Black Phosphorus and Rhenium Disulfide Transistors. Advanced Materials, 2022, 34, e2106321.	21.0	15
2	Investigation of Coercive Field Shift During Cycling in HfZrO <i>â,"</i> Ferroelectric Capacitors. IEEE Transactions on Electron Devices, 2022, 69, 2384-2390.	3.0	6
3	Flexible synaptic floating gate devices with dual electrical modulation based on ambipolar black phosphorus. IScience, 2022, 25, 103947.	4.1	3
4	Defects Induced Charge Trapping/Detrapping and Hysteresis Phenomenon in MoS ₂ Field-Effect Transistors: Mechanism Revealed by Anharmonic Marcus Charge Transfer Theory. ACS Applied Materials & Interfaces, 2022, 14, 2185-2193.	8.0	15
5	A novel visible light sensing and recording system enabled by integration of photodetector and electrochromic devices. Nanoscale, 2021, 13, 9177-9184.	5.6	8
6	Improved Low-Frequency Noise in Recessed-Gate E-Mode AlGaN/GaN MOS-HEMTs Under Electrical and Thermal Stress. IEEE Journal of the Electron Devices Society, 2021, 9, 511-516.	2.1	0
7	Improved low-frequency noise in CVD bilayer MoS2 field-effect transistors. Applied Physics Letters, 2021, 118, .	3.3	11
8	Performance Optimization of Atomic Layer Deposited ZnO Thin-Film Transistors by Vacuum Annealing. IEEE Electron Device Letters, 2021, 42, 716-719.	3.9	12
9	Doubleâ€Gate MoS ₂ Fieldâ€Effect Transistors with Fullâ€Range Tunable Threshold Voltage for Multifunctional Logic Circuits. Advanced Materials, 2021, 33, e2101036.	21.0	42
10	High-performance n-type transistors based on CVD-grown large-domain trilayer WSe2. APL Materials, 2021, 9, .	5.1	7
11	Investigation of Time Dependent Dielectric Breakdown (TDDB) of Hf _{0.5} Zr _{0.5} O ₂ -Based Ferroelectrics Under Both Forward and Reverse Stress Conditions. IEEE Journal of the Electron Devices Society, 2021, 9, 735-740.	2.1	7
12	Tunable 1/ <i>f</i> Noise in CVD Bernal-Stacked Bilayer Graphene Transistors. ACS Applied Materials & Interfaces, 2020, 12, 17686-17690.	8.0	5
13	Reconfigurable Logicâ€inâ€Memory and Multilingual Artificial Synapses Based on 2D Heterostructures. Advanced Functional Materials, 2020, 30, 1909645.	14.9	92
14	A transverse tunnelling field-effect transistor made from a van der Waals heterostructure. Nature Electronics, 2020, 3, 106-112.	26.0	69
15	Light-stimulated artificial synapse based on Schottky barrier modulated CVD Mos2 transistors. , 2020, ,		0
16	High-Frequency Performance of MoS ₂ Transistors at Cryogenic Temperatures. , 2020, , .		0
17	Nanometre-thin indium tin oxide for advanced high-performance electronics. Nature Materials, 2019, 18, 1091-1097.	27.5	207
18	Improved Current Collapse in Recessed AlGaN/GaN MOS-HEMTs by Interface and Structure Engineering. IEEE Transactions on Electron Devices, 2019, 66, 4591-4596.	3.0	17

#	Article	IF	CITATIONS
19	High-speed black phosphorus field-effect transistors approaching ballistic limit. Science Advances, 2019, 5, eaau3194.	10.3	66
20	Negative transconductance and negative differential resistance in asymmetric narrow bandgap 2D–3D heterostructures. Nanoscale, 2019, 11, 4701-4706.	5.6	20
21	Wafer Scale Mapping and Statistical Analysis of Radio Frequency Characteristics in Highly Uniform CVD Graphene Transistors. Advanced Electronic Materials, 2019, 5, 1800711.	5.1	12
22	High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition. IEEE Electron Device Letters, 2019, 40, 419-422.	3.9	34
23	High performance optoelectronics based on CVD Mos2. , 2019, , .		0
24	Improved Interface Properties and Dielectric Breakdown in Recessed AlGaN/GaN MOS-HEMTs Using HfSiO <inline-formula> <tex-math notation="LaTeX">\$_{{x}}\$ </tex-math> </inline-formula> as Gate Dielectric. IEEE Electron Device Letters, 2019, 40, 295-298.	3.9	20
25	Improvement of Conversion Loss of Resistive Mixers Using Bernal-Stacked Bilayer Graphene. IEEE Electron Device Letters, 2019, 40, 325-328.	3.9	7
26	Performance and Reliability Improvement under High Current Densities in Black Phosphorus Transistors by Interface Engineering. ACS Applied Materials & Interfaces, 2019, 11, 1587-1594.	8.0	13
27	High Performance Black Phosphorus Electronic and Photonic Devices with HfLaO Dielectric. IEEE Electron Device Letters, 2018, 39, 127-130.	3.9	31
28	Optimized Transport Properties in Lithium Doped Black Phosphorus Transistors. IEEE Electron Device Letters, 2018, 39, 769-772.	3.9	25
29	Anomalous Temperature Dependence in Metal–Black Phosphorus Contact. Nano Letters, 2018, 18, 26-31.	9.1	25
30	Interface properties study on SiC MOS with high-k hafnium silicate gate dielectric. AIP Advances, 2018, 8, 125314.	1.3	2
31	AlGaN/GaN E-mode MOS-HEMT Using Atomic-Layer-Deposited HfLaOx as Gate Dielectric. , 2018, , .		1
32	Scalable high performance radio frequency electronics based on large domain bilayer MoS2. Nature Communications, 2018, 9, 4778.	12.8	98
33	High-performance transistors based on monolayer CVD MoS2 grown on molten glass. Applied Physics Letters, 2018, 113, .	3.3	36
34	High-performance two-dimensional transistors and circuits. , 2018, , .		2
35	Optimized Transport of Black Phosphorus Top Gate Transistors Using Alucone Dielectrics. IEEE Electron Device Letters, 2018, 39, 1952-1955.	3.9	2
36	High-Performance CVD Bernal-Stacked Bilayer Graphene Transistors for Amplifying and Mixing Signals at High Frequencies. ACS Applied Materials & Interfaces, 2018, 10, 20219-20224.	8.0	11

#	Article	IF	CITATIONS
37	Black Phosphorus Radio Frequency Electronics at Cryogenic Temperatures. Advanced Electronic Materials, 2018, 4, 1800138.	5.1	15
38	Nearâ€Field Characterization of Graphene Plasmons by Photoâ€Induced Force Microscopy. Laser and Photonics Reviews, 2018, 12, 1800040.	8.7	26
39	Channel Engineering of Normally-OFF AlGaN/GaN MOS-HEMTs by Atomic Layer Etching and High-\$kappa\$ Dielectric. IEEE Electron Device Letters, 2018, 39, 1377-1380.	3.9	39
40	Tunable Low-Frequency Noise in Dual-Gate MoS ₂ Transistors. IEEE Electron Device Letters, 2018, 39, 131-134.	3.9	11
41	Multifunctional devices from asymmetry. Nature Electronics, 2018, 1, 331-332.	26.0	3
42	Toward high-performance two-dimensional black phosphorus electronic and optoelectronic devices. Chinese Physics B, 2017, 26, 037307.	1.4	11
43	High field transport of high performance black phosphorus transistors. Applied Physics Letters, 2017, 110, .	3.3	27
44	Short-Channel Graphene Mixer With High Linearity. IEEE Electron Device Letters, 2017, 38, 1168-1171.	3.9	21
45	Multifunctional high-performance van der Waals heterostructures. Nature Nanotechnology, 2017, 12, 1148-1154.	31.5	278
46	Effect of Dielectric Interface on the Performance of MoS ₂ Transistors. ACS Applied Materials & Interfaces, 2017, 9, 44602-44608.	8.0	43
47	Semianalytical model of the contact resistance in two-dimensional semiconductors. Physical Review B, 2017, 96, .	3.2	5
48	Development of two-dimensional materials for electronic applications. Science China Information Sciences, 2016, 59, 1.	4.3	9
49	Interface properties study on SiC MOS with high- $\hat{I}^{ m e}$ Al2O3 gate dielectric. , 2016, , .		0
50	Broadband Blackâ€Phosphorus Photodetectors with High Responsivity. Advanced Materials, 2016, 28, 3481-3485.	21.0	364
51	Mechanisms of current fluctuation in ambipolar black phosphorus field-effect transistors. Nanoscale, 2016, 8, 3572-3578. Nearly Perfect Spin Filter Based on a Wire of Half-Metallic <mml:math< td=""><td>5.6</td><td>27</td></mml:math<>	5.6	27
	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mo< td=""><td></td><td></td></mml:mo<></mml:mrow>		

#	Article	IF	CITATIONS
55	Observation of frozen electronic sataes at epitaxial La <inf>2</inf> 0 <inf>3</inf> /GaAs heterostructure. , 2014, , .		0
56	Low temperature study of GaAs MOSFETs with atomic layer epitaxial La <inf>2</inf> O <inf>3</inf> . , 2014, , .		0
57	Graphene Electronics: Materials, Devices, and Circuits. Proceedings of the IEEE, 2013, 101, 1620-1637.	21.3	104
58	State-of-the-Art Graphene High-Frequency Electronics. Nano Letters, 2012, 12, 3062-3067.	9.1	371
59	Wafer-Scale Graphene Integrated Circuit. Science, 2011, 332, 1294-1297.	12.6	812
60	High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 2011, 472, 74-78.	27.8	813