Yanqing Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8415724/publications.pdf Version: 2024-02-01

ΥλΝΟΙΝΟ Μ/Π

#	Article	lF	CITATIONS
1	High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 2011, 472, 74-78.	13.7	813
2	Wafer-Scale Graphene Integrated Circuit. Science, 2011, 332, 1294-1297.	6.0	812
3	State-of-the-Art Graphene High-Frequency Electronics. Nano Letters, 2012, 12, 3062-3067.	4.5	371
4	Broadband Blackâ€₽hosphorus Photodetectors with High Responsivity. Advanced Materials, 2016, 28, 3481-3485.	11.1	364
5	Multifunctional high-performance van der Waals heterostructures. Nature Nanotechnology, 2017, 12, 1148-1154.	15.6	278
6	Nanometre-thin indium tin oxide for advanced high-performance electronics. Nature Materials, 2019, 18, 1091-1097.	13.3	207
7	Graphene Electronics: Materials, Devices, and Circuits. Proceedings of the IEEE, 2013, 101, 1620-1637.	16.4	104
8	Scalable high performance radio frequency electronics based on large domain bilayer MoS2. Nature Communications, 2018, 9, 4778.	5.8	98
9	Performance Potential and Limit of MoS ₂ Transistors. Advanced Materials, 2015, 27, 1547-1552.	11.1	92
10	Reconfigurable Logicâ€inâ€Memory and Multilingual Artificial Synapses Based on 2D Heterostructures. Advanced Functional Materials, 2020, 30, 1909645.	7.8	92
11	A transverse tunnelling field-effect transistor made from a van der Waals heterostructure. Nature Electronics, 2020, 3, 106-112.	13.1	69
12	High-speed black phosphorus field-effect transistors approaching ballistic limit. Science Advances, 2019, 5, eaau3194.	4.7	66
13	Effect of Dielectric Interface on the Performance of MoS ₂ Transistors. ACS Applied Materials & Interfaces, 2017, 9, 44602-44608.	4.0	43
14	Doubleâ€Gate MoS ₂ Fieldâ€Effect Transistors with Fullâ€Range Tunable Threshold Voltage for Multifunctional Logic Circuits. Advanced Materials, 2021, 33, e2101036.	11.1	42
15	Channel Engineering of Normally-OFF AlGaN/GaN MOS-HEMTs by Atomic Layer Etching and High-\$kappa\$ Dielectric. IEEE Electron Device Letters, 2018, 39, 1377-1380.	2.2	39
16	High-performance transistors based on monolayer CVD MoS2 grown on molten glass. Applied Physics Letters, 2018, 113, .	1.5	36
17	High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition. IEEE Electron Device Letters, 2019, 40, 419-422.	2.2	34
18	High Performance Black Phosphorus Electronic and Photonic Devices with HfLaO Dielectric. IEEE Electron Device Letters, 2018, 39, 127-130.	2.2	31

YANQING WU

#	Article	IF	CITATIONS
19	Mechanisms of current fluctuation in ambipolar black phosphorus field-effect transistors. Nanoscale, 2016, 8, 3572-3578.	2.8	27
20	High field transport of high performance black phosphorus transistors. Applied Physics Letters, 2017, 110, .	1.5	27
21	Nearâ€Field Characterization of Graphene Plasmons by Photoâ€Induced Force Microscopy. Laser and Photonics Reviews, 2018, 12, 1800040.	4.4	26
22	Optimized Transport Properties in Lithium Doped Black Phosphorus Transistors. IEEE Electron Device Letters, 2018, 39, 769-772.	2.2	25
23	Anomalous Temperature Dependence in Metal–Black Phosphorus Contact. Nano Letters, 2018, 18, 26-31.	4.5	25
24	Short-Channel Graphene Mixer With High Linearity. IEEE Electron Device Letters, 2017, 38, 1168-1171.	2.2	21
25	Negative transconductance and negative differential resistance in asymmetric narrow bandgap 2D–3D heterostructures. Nanoscale, 2019, 11, 4701-4706.	2.8	20
26	Improved Interface Properties and Dielectric Breakdown in Recessed AlGaN/GaN MOS-HEMTs Using HfSiO <inline-formula> <tex-math notation="LaTeX">\$_{{x}}\$ </tex-math> </inline-formula> as Gate Dielectric. IEEE Electron Device Letters, 2019, 40, 295-298.	2.2	20
27	Improved Current Collapse in Recessed AlGaN/GaN MOS-HEMTs by Interface and Structure Engineering. IEEE Transactions on Electron Devices, 2019, 66, 4591-4596.	1.6	17
28	Noise in Graphene Superlattices Grown on Hexagonal Boron Nitride. ACS Nano, 2015, 9, 11382-11388.	7.3	15
29	Black Phosphorus Radio Frequency Electronics at Cryogenic Temperatures. Advanced Electronic Materials, 2018, 4, 1800138.	2.6	15
30	Nonvolatile Logic and Ternary Contentâ€Addressable Memory Based on Complementary Black Phosphorus and Rhenium Disulfide Transistors. Advanced Materials, 2022, 34, e2106321.	11.1	15
31	Defects Induced Charge Trapping/Detrapping and Hysteresis Phenomenon in MoS ₂ Field-Effect Transistors: Mechanism Revealed by Anharmonic Marcus Charge Transfer Theory. ACS Applied Materials & Interfaces, 2022, 14, 2185-2193.	4.0	15
32	Performance and Reliability Improvement under High Current Densities in Black Phosphorus Transistors by Interface Engineering. ACS Applied Materials & Interfaces, 2019, 11, 1587-1594.	4.0	13
33	Wafer Scale Mapping and Statistical Analysis of Radio Frequency Characteristics in Highly Uniform CVD Graphene Transistors. Advanced Electronic Materials, 2019, 5, 1800711.	2.6	12
34	Performance Optimization of Atomic Layer Deposited ZnO Thin-Film Transistors by Vacuum Annealing. IEEE Electron Device Letters, 2021, 42, 716-719.	2.2	12
35	Toward high-performance two-dimensional black phosphorus electronic and optoelectronic devices. Chinese Physics B, 2017, 26, 037307.	0.7	11
36	High-Performance CVD Bernal-Stacked Bilayer Graphene Transistors for Amplifying and Mixing Signals at High Frequencies. ACS Applied Materials & Interfaces, 2018, 10, 20219-20224.	4.0	11

Yanqing Wu

#	Article	IF	CITATIONS
37	Tunable Low-Frequency Noise in Dual-Gate MoS ₂ Transistors. IEEE Electron Device Letters, 2018, 39, 131-134.	2.2	11
38	Improved low-frequency noise in CVD bilayer MoS2 field-effect transistors. Applied Physics Letters, 2021, 118, .	1.5	11
39	Development of two-dimensional materials for electronic applications. Science China Information Sciences, 2016, 59, 1.	2.7	9
40	A novel visible light sensing and recording system enabled by integration of photodetector and electrochromic devices. Nanoscale, 2021, 13, 9177-9184.	2.8	8
41	Improvement of Conversion Loss of Resistive Mixers Using Bernal-Stacked Bilayer Graphene. IEEE Electron Device Letters, 2019, 40, 325-328.	2.2	7
42	High-performance n-type transistors based on CVD-grown large-domain trilayer WSe2. APL Materials, 2021, 9, .	2.2	7
43	Investigation of Time Dependent Dielectric Breakdown (TDDB) of Hf _{0.5} Zr _{0.5} O ₂ -Based Ferroelectrics Under Both Forward and Reverse Stress Conditions. IEEE Journal of the Electron Devices Society, 2021, 9, 735-740.	1.2	7
44	Investigation of Coercive Field Shift During Cycling in HfZrO <i>â,"</i> Ferroelectric Capacitors. IEEE Transactions on Electron Devices, 2022, 69, 2384-2390. Nearly Perfect Spin Filter Based on a Wire of Half-Metallics multimath	1.6	6
45	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mo< td=""><td></td><td></td></mml:mo<></mml:mrow>		

Yanqing Wu

#	Article	IF	CITATIONS
55	Low temperature study of GaAs MOSFETs with atomic layer epitaxial La <inf>2</inf> O <inf>3</inf> . , 2014, , .		0
56	Interface properties study on SiC MOS with high-Î $^{ m e}$ Al2O3 gate dielectric. , 2016, , .		0
57	High performance optoelectronics based on CVD Mos2. , 2019, , .		Ο
58	Improved Low-Frequency Noise in Recessed-Gate E-Mode AlGaN/GaN MOS-HEMTs Under Electrical and Thermal Stress. IEEE Journal of the Electron Devices Society, 2021, 9, 511-516.	1.2	0
59	Light-stimulated artificial synapse based on Schottky barrier modulated CVD Mos2 transistors. , 2020, ,		0
60	High-Frequency Performance of MoS ₂ Transistors at Cryogenic Temperatures. , 2020, , .		0