Thomas Becker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8415497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Axonal regrowth after spinal cord transection in adult zebrafish. , 1997, 377, 577-595.		359
2	Motor Neuron Regeneration in Adult Zebrafish. Journal of Neuroscience, 2008, 28, 8510-8516.	1.7	239
3	Dynamic control of proinflammatory cytokines II-1β and Tnf-α by macrophages in zebrafish spinal cord regeneration. Nature Communications, 2018, 9, 4670.	5.8	210
4	Dysregulation of ubiquitin homeostasis and β-catenin signaling promote spinal muscular atrophy. Journal of Clinical Investigation, 2014, 124, 1821-1834.	3.9	151
5	Wnt signaling controls pro-regenerative Collagen XII in functional spinal cord regeneration in zebrafish. Nature Communications, 2017, 8, 126.	5.8	146
6	Sonic Hedgehog Is a Polarized Signal for Motor Neuron Regeneration in Adult Zebrafish. Journal of Neuroscience, 2009, 29, 15073-15082.	1.7	118
7	Dopamine from the Brain Promotes Spinal Motor Neuron Generation during Development and Adult Regeneration. Developmental Cell, 2013, 25, 478-491.	3.1	110
8	Neuronal Regeneration from Ependymo-Radial Glial Cells: Cook, Little Pot, Cook!. Developmental Cell, 2015, 32, 516-527.	3.1	92
9	Spinal motor neurons are regenerated after mechanical lesion and genetic ablation in larval zebrafish. Development (Cambridge), 2016, 143, 1464-74.	1.2	88
10	Notch Signaling Controls Generation of Motor Neurons in the Lesioned Spinal Cord of Adult Zebrafish. Journal of Neuroscience, 2012, 32, 3245-3252.	1.7	85
11	Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy. PLoS Genetics, 2017, 13, e1006744.	1.5	69
12	Serotonin Promotes Development and Regeneration of Spinal Motor Neurons in Zebrafish. Cell Reports, 2015, 13, 924-932.	2.9	64
13	The spinal ependymal zone as a source of endogenous repair cells across vertebrates. Progress in Neurobiology, 2018, 170, 67-80.	2.8	63
14	Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy. Human Molecular Genetics, 2014, 23, 855-869.	1.4	62
15	Lesionâ€induced generation of interneuron cell types in specific dorsoventral domains in the spinal cord of adult zebrafish. Journal of Comparative Neurology, 2012, 520, 3604-3616.	0.9	56
16	Tenascin-C is involved in motor axon outgrowth in the trunk of developing zebrafish. Developmental Dynamics, 2005, 234, 550-566.	0.8	51
17	A unique macrophage subpopulation signals directly to progenitor cells to promote regenerative neurogenesis in the zebrafish spinal cord. Developmental Cell, 2021, 56, 1617-1630.e6.	3.1	44
18	CRISPR gRNA phenotypic screening in zebrafish reveals pro-regenerative genes in spinal cord injury. PLoS Genetics, 2021, 17, e1009515.	1.5	36

THOMAS BECKER

#	Article	IF	CITATIONS
19	Regeneration of Dopaminergic Neurons in Adult Zebrafish Depends on Immune System Activation and Differs for Distinct Populations. Journal of Neuroscience, 2019, 39, 4694-4713.	1.7	26
20	<i>Chondrolectin</i> Mediates Growth Cone Interactions of Motor Axons with an Intermediate Target. Journal of Neuroscience, 2012, 32, 4426-4439.	1.7	23
21	Interaction of Axonal Chondrolectin with Collagen XIXa1 Is Necessary for Precise Neuromuscular Junction Formation. Cell Reports, 2019, 29, 1082-1098.e10.	2.9	13
22	Automated <i>in vivo</i> drug screen in zebrafish identifies synapse-stabilising drugs with relevance to spinal muscular atrophy. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	12
23	Dynamic cell interactions allow spinal cord regeneration in zebrafish. Current Opinion in Physiology, 2020, 14, 64-69.	0.9	9
24	Regenerative neurogenesis: the integration of developmental, physiological and immune signals. Development (Cambridge), 2022, 149, .	1.2	9
25	Controlled Semi-Automated Lased-Induced Injuries for Studying Spinal Cord Regeneration in Zebrafish Larvae. Journal of Visualized Experiments, 2021, , .	0.2	1