
Alexander Agafonov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8415004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Susceptibility to SARS-CoV-2 Virus Variants of Concern in Mouse Models. Problemy Osobo Opasnykh Infektsii, 2022, , 148-155.	0.6	4
2	Viability of sARs-CoV-2 Coronavirus strains on Different types of test surfaces, in Drinking Water and Their Resistance to Disinfectants. Problemy Osobo Opasnykh Infektsii, 2022, , 86-93.	0.6	0
3	New chemical agents based on adamantane–monoterpene conjugates against orthopoxvirus infections. RSC Medicinal Chemistry, 2020, 11, 1185-1195.	3.9	24
4	Detection of SARS-CoV-2 RNA in nasopharyngeal swabs from COVID-19 patients and asymptomatic cases of infection by real-time and digital PCR. Klinichescheskaya Laboratornaya Diagnostika, 2020, 65, 785-792.	0.5	9
5	Identification of Dengue Fever Markers by Dot Immunoasay. Problemy Osobo Opasnykh Infektsii, 2019, , 81-86.	0.6	0
6	New effective chemically synthesized anti-smallpox compound NIOCH-14. Journal of General Virology, 2016, 97, 1229-1239.	2.9	51
7	Using ICR and SCID mice as animal models for smallpox to assess antiviral drug efficacy. Journal of General Virology, 2015, 96, 2832-2843.	2.9	13
8	Monitoring of viable airborne SARS virus in ambient air. Atmospheric Environment, 2004, 38, 3879-3884.	4.1	43
9	Designing and engineering of DNA-vaccine construction encoding multiple CTL-epitopes of major HIV-1 antigens. Vaccine, 2004, 22, 1672-1682.	3.8	31
10	Comparative analysis using a mouse model of the immunogenicity of artificial VLP and attenuated Salmonella strain carrying a DNA-vaccine encoding HIV-1 polyepitope CTL-immunogen. Vaccine, 2004, 22, 1692-1699.	3.8	30
11	Construction of artificial virus-like particles exposing HIV epitopes, and the study of their immunogenic properties. Vaccine, 2003, 21, 386-392.	3.8	12
12	Enteric administration of a live attenuated measles vaccine does not induce protective immunity in a macaque model. Vaccine, 2002, 20, 2906-2912.	3.8	7
13	Experimental study on the possibility of treatment of some hemorrhagic fevers. Journal of Biotechnology, 2000, 83, 67-76.	3.8	39
14	Genotyping of measles virus isolates from Central Europe and Russia. Journal of Medical Virology, 1999, 58, 313-320.	5.0	49
15	Inactivated Marburg virus elicits a nonprotective immune response in Rhesus monkeys. Journal of Biotechnology, 1996, 44, 111-118.	3.8	51
16	Detection of the RNA for new multicomponent virus in patients with Crimean-Congo hemorrhagic fever in southern Russia. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk, 0, , .	0.6	5