Mario I Romero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8414641/publications.pdf

Version: 2024-02-01

257357 123376 4,049 87 24 61 citations h-index g-index papers 91 91 91 6157 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Sensing and Stimulating Electrodes for Electroceuticals. Frontiers in Sensors, 2022, 3, .	1.7	O
2	Renal Nerve Activity and Arterial Depressor Responses Induced by Neuromodulation of the Deep Peroneal Nerve in Spontaneously Hypertensive Rats. Frontiers in Neuroscience, 2022, 16, .	1.4	1
3	Biomaterials and Regenerative Medicine in Pain Management. Current Pain and Headache Reports, 2022, 26, 533-541.	1.3	3
4	Peripheral Nerves, Anatomy and Physiology of. , 2022, , 2715-2719.		0
5	Peripheral Nerve Interface, Regenerative. , 2022, , 2694-2697.		O
6	Targeted neuromodulation of pelvic floor nerves in aging and multiparous rabbits improves continence. Scientific Reports, 2021, 11, 10615.	1.6	3
7	Both high fat and high carbohydrate diets impair vagus nerve signaling of satiety. Scientific Reports, 2021, 11, 10394.	1.6	15
8	Abstract MP23: Arterial Depressor Responses Induced By Neuromodulation Of Deep Peroneal Nerve In Spontaneously Hypertensive Rats. Hypertension, 2021, 78, .	1.3	0
9	Platinized graphene fiber electrodes uncover direct spleen-vagus communication. Communications Biology, 2021, 4, 1097.	2.0	14
10	Blood Pressure Regulation by the Carotid Sinus Nerve: Clinical Implications for Carotid Body Neuromodulation. Frontiers in Neuroscience, 2021, 15, 725751.	1.4	3
11	Bladder and urethral dysfunction in multiparous and mature rabbits correlates with abnormal activity of pubococcygeus and bulbospongiosus muscles. Neurourology and Urodynamics, 2020, 39, 116-124.	0.8	5
12	Intraneural ultramicroelectrode arrays for function-specific interfacing to the vagus nerve. Biosensors and Bioelectronics, 2020, 170, 112608.	5. 3	10
13	Mechanical considerations for design and implementation of peripheral intraneural devices. Journal of Neural Engineering, 2019, 16, 064001.	1.8	12
14	Miniature electroparticle-cuff for wireless peripheral neuromodulation. Journal of Neural Engineering, 2019, 16, 046002.	1.8	15
15	Highâ€Performance Grapheneâ€Fiberâ€Based Neural Recording Microelectrodes. Advanced Materials, 2019, 31, e1805867.	11.1	122
16	Flat electrode contacts for vagus nerve stimulation. PLoS ONE, 2019, 14, e0215191.	1.1	25
17	Enhancing plasticity in central networks improves motor and sensory recovery after nerve damage. Nature Communications, 2019, 10, 5782.	5.8	59
18	Prophylactic Riluzole Attenuates Oxidative Stress Damage in Spinal Cord Distraction. Journal of Neurotrauma, 2018, 35, 1319-1328.	1.7	16

#	Article	IF	CITATIONS
19	A Hybrid 3D Printing and Robotic-assisted Embedding Approach for Design and Fabrication of Nerve Cuffs with Integrated Locking Mechanisms. MRS Advances, 2018, 3, 2365-2372.	0.5	9
20	Multiparity affects conduction properties of pelvic floor nerves in rabbits. Brain and Behavior, 2018, 8, e01105.	1.0	5
21	Thin Film Multi-Electrode Softening Cuffs for Selective Neuromodulation. Scientific Reports, 2018, 8, 16390.	1.6	69
22	Glial-derived growth factor and pleiotrophin synergistically promote axonal regeneration in critical nerve injuries. Acta Biomaterialia, 2018, 78, 165-177.	4.1	30
23	Adult mouse sensory neurons on microelectrode arrays exhibit increased spontaneous and stimulus-evoked activity in the presence of interleukin-6. Journal of Neurophysiology, 2018, 120, 1374-1385.	0.9	32
24	Atraumatic Spine Distraction Induces Metabolic Distress in Spinal Motor Neurons. Journal of Neurotrauma, 2017, 34, 2034-2044.	1.7	10
25	Median and ulnar nerve injuries reduce volitional forelimb strength in rats. Muscle and Nerve, 2017, 56, 1149-1154.	1.0	15
26	Implantable electrodes. Current Opinion in Electrochemistry, 2017, 3, 68-74.	2.5	20
27	Asymmetric Sensory-Motor Regeneration of Transected Peripheral Nerves Using Molecular Guidance Cues. Scientific Reports, 2017, 7, 14323.	1.6	14
28	A Sub-millimeter, Inductively Powered Neural Stimulator. Frontiers in Neuroscience, 2017, 11, 659.	1.4	62
29	Electrical stimulation enhances the acetylcholine receptors available for neuromuscular junction formation. Acta Biomaterialia, 2016, 45, 328-339.	4.1	15
30	Electromagnetic interference in intraoperative monitoring of motor evoked potentials and a wireless solution. Medical Engineering and Physics, 2016, 38, 87-96.	0.8	4
31	Brain on a bench top. Materials Today, 2016, 19, 124-125.	8.3	2
32	Anthropogenic Radio-Frequency Electromagnetic Fields Elicit Neuropathic Pain in an Amputation Model. PLoS ONE, 2016, 11, e0144268.	1.1	3
33	Chronic in-vivo testing of a 16-channel implantable wireless neural stimulator., 2015, 2015, 1017-20.		18
34	Pain Inhibition by Optogenetic Activation of Specific Anterior Cingulate Cortical Neurons. PLoS ONE, 2015, 10, e0117746.	1.1	76
35	Microchannel Electrode Stimulation of Deep Peroneal Nerve Fascicles Induced Mean Arterial Depressor Response in Hypertensive Rats. Bioelectronic Medicine, 2015, 2, 55-62.	1.0	3
36	Coiled polymeric growth factor gradients for multi-luminal neural chemotaxis. Brain Research, 2015, 1619, 72-83.	1.1	9

3

#	Article	IF	Citations
37	Chronic and low charge injection wireless intraneural stimulation in vivo. , 2015, 2015, 1013-6.		6
38	3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials, 2015, 67, 264-273.	5.7	357
39	In-vivo tests of a 16-channel implantable wireless neural stimulator. , 2015, , .		21
40	Peripheral Nerves, Anatomy and Physiology of., 2015,, 2320-2323.		1
41	Peripheral Nerve Regeneration: Mechanism, Cell Biology, and Therapies. BioMed Research International, 2014, 2014, 1-2.	0.9	11
42	Slump Molding of Microchannel Arrays in Soda-Lime Glass for Bioanalytical Device Development. Journal of Micro and Nano-Manufacturing, 2014, 2, .	0.8	2
43	Chronic sensory-motor activity in behaving animals using regenerative multi-electrode interfaces. , 2014, 2014, 1973-6.		13
44	A novel Microchannel Electrode Array: Towards bioelectronic medical interfacing of small peripheral nerves., 2014, 2014, 1981-4.		5
45	Peripheral Nerve Interface, Regenerative. , 2014, , 1-4.		0
46	Peripheral Nerves, Anatomy and Physiology of. , 2014, , 1-5.		3
47	Ephrin-B2 expression in the proprioceptive sensory system. Neuroscience Letters, 2013, 545, 69-74.	1.0	2
48	Reelin induces EphB activation. Cell Research, 2013, 23, 473-490.	5.7	62
49	Material considerations for peripheral nerve interfacing. MRS Bulletin, 2012, 37, 573-580.	1.7	41
50	Normal Molecular Repair Mechanisms in Regenerative Peripheral Nerve Interfaces Allow Recording of Early Spike Activity Despite Immature Myelination. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 220-227.	2.7	21
51	Functional near infrared brain imaging with a brush-fiber optode to improve optical contact on subjects with dense hair. , $2011, , .$		4
52	Modality-Specific Axonal Regeneration: Toward Selective Regenerative Neural Interfaces. Frontiers in Neuroengineering, 2011, 4, 11.	4.8	34
53	A Wireless System for Monitoring Transcranial Motor Evoked Potentials. Annals of Biomedical Engineering, 2011, 39, 517-523.	1.3	8
54	Peripheral Nerve Repair Through Multi-Luminal Biosynthetic Implants. Annals of Biomedical Engineering, 2011, 39, 1815-1828.	1.3	24

#	Article	IF	CITATIONS
55	VEGF Release in Multiluminal Hydrogels Directs Angiogenesis from Adult Vasculature In Vitro. Cardiovascular Engineering and Technology, 2011, 2, 173-185.	0.7	5
56	Characterization of a novel bidirectional distraction spinal cord injury animal model. Journal of Neuroscience Methods, 2011, 197, 97-103.	1.3	24
57	Control of neural interfacing in peripheral nerves through regenerative molecular guidance. , 2011, 2011, 4633-6.		1
58	A miniature power-efficient bidirectional telemetric platform for in-vivo acquisition of electrophysiological signals. , $2011, \dots$		2
59	Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy. Journal of Biomedical Optics, 2010, 15, 036008.	1.4	22
60	Quantification of functional near infrared†spectroscopy to assess cortical reorganization †in children with cerebral palsy. Optics Express, 2010, 18, 25973.	1.7	37
61	Identification of Abnormal Motor Cortex Activation Patterns in Children with Cerebral Palsy by Functional Near Infrared Spectroscopy. , 2010, , .		1
62	Early Interfaced Neural Activity from Chronic Amputated Nerves. Frontiers in Neuroengineering, 2009, 2, 5.	4.8	48
63	Carbon nanotube coated high-throughput neurointerfaces in assistive environments., 2009, , .		0
64	Nerve Pathology in Unregulated Limb Growth. Journal of Bone and Joint Surgery - Series A, 2009, 91, 53-57.	1.4	4
65	Carbon nanotube coating improves neuronal recordings. Nature Nanotechnology, 2008, 3, 434-439.	15.6	655
66	Biocompatible SU-8-Based Microprobes for Recording Neural Spike Signals From Regenerated Peripheral Nerve Fibers. IEEE Sensors Journal, 2008, 8, 1830-1836.	2.4	97
67	Investigation of the Motor Cortex Function in Children with Cerebral Palsy Using Functional Near-Infrared Spectroscopic Imaging. , 2008, , .		0
68	Robust cell migration and neuronal growth on pristine carbon nanotube sheets and yarns. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1245-1261.	1.9	154
69	Deletion of Nf1 in Neurons Induces Increased Axon Collateral Branching after Dorsal Root Injury. Journal of Neuroscience, 2007, 27, 2124-2134.	1.7	27
70	SU8-Based Micro Neural Probe for Enhanced Chronic in-Vivo Recording of Spike Signals from Regenerated Axons., 2006,,.		3
71	Nanocomposites for Neural Interfaces. Materials Research Society Symposia Proceedings, 2006, 926, 1.	0.1	3
72	Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10694-10699.	3.3	270

#	Article	IF	Citations
73	The zinc finger transcription factor Klf7 is required for TrkA gene expression and development of nociceptive sensory neurons. Genes and Development, 2005, 19, 1354-1364.	2.7	73
74	Prolactin Replacement Must Be Continuous and Initiated Prior to 21 d of Age to Maintain Hypothalamic Dopaminergic Neurons in Hypopituitary Mice. Endocrine, 2003, 20, 139-148.	2.2	17
75	Growth Hormone-Releasing Hormone-Producing and Dopaminergic Neurones in the Mouse Arcuate Nucleus Are Independently Regulated Populations. Journal of Neuroendocrinology, 2003, 15, 280-288.	1.2	22
76	Neurotrophin-3 Is Required for Appropriate Establishment of Thalamocortical Connections. Neuron, 2002, 36, 623-634.	3.8	71
77	Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes and Development, 2001, 15, 859-876.	2.7	520
78	Forward Signaling Mediated by Ephrin-B3 Prevents Contralateral Corticospinal Axons from Recrossing the Spinal Cord Midline. Neuron, 2001, 29, 85-97.	3.8	206
79	Functional Regeneration of Chronically Injured Sensory Afferents into Adult Spinal Cord after Neurotrophin Gene Therapy. Journal of Neuroscience, 2001, 21, 8408-8416.	1.7	178
80	Extensive Sprouting of Sensory Afferents and Hyperalgesia Induced by Conditional Expression of Nerve Growth Factor in the Adult Spinal Cord. Journal of Neuroscience, 2000, 20, 4435-4445.	1.7	163
81	Visualization of Axonally Transported Horseradish Peroxidase Using Enhanced Immunocytochemical Detection: A Direct Comparison with the Tetramethylbenzidine Method. Journal of Histochemistry and Cytochemistry, 1999, 47, 265-272.	1.3	14
82	Adenoviral-mediated gene transfer to enhance neuronal survival, growth, and regeneration., 1999, 55, 147-157.		28
83	Adenoviral gene transfer into the normal and injured spinal cord: enhanced transgene stability by combined administration of temperature-sensitive virus and transient immune blockade. Gene Therapy, 1998, 5, 1612-1621.	2.3	39
84	Identification of Growth Hormone-Releasing Hormone and Somatostatin Neurons Projecting to the Median Eminence in Normal and Growth Hormone-Deficient Ames Dwarf Mice. Neuroendocrinology, 1997, 65, 107-116.	1.2	17
85	Hypophysiotropic Somatostatin Expression during Postnatal Development in Growth Hormone-Deficient Ames Dwarf Mice: Peptide Immunocytochemistry. Neuroendocrinology, 1996, 64, 364-378.	1.2	9
86	Role of Prolactin in Developmental Differentiation of Hypophysiotropic Tuberoinfundibular Dopaminergic Neurons., 1995, 50, 471-481.		6
87	Postnatal Reduction in Number of Hypothalamic Tuberoinfundibular Dopaminergic Neurons in Prolactin-Deficient Dwarf Mice. Neuroendocrinology, 1994, 59, 189-196.	1.2	14