
## Jiawei Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8414591/publications.pdf Version: 2024-02-01



LIAWEL CHEN

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Interactions between biochar and clay minerals in changing biochar carbon stability. Science of the<br>Total Environment, 2022, 809, 151124.                                                                        | 3.9 | 33        |
| 2  | Effect of ageing on biochar properties and pollutant management. Chemosphere, 2022, 292, 133427.                                                                                                                    | 4.2 | 34        |
| 3  | Norfloxacin adsorption and subsequent degradation on ball-milling tailored N-doped biochar.<br>Chemosphere, 2022, 303, 135264.                                                                                      | 4.2 | 33        |
| 4  | Coprecipitation of Fe/Cr Hydroxides with Organics: Roles of Organic Properties in Composition and Stability of the Coprecipitates. Environmental Science & amp; Technology, 2021, 55, 4638-4647.                    | 4.6 | 46        |
| 5  | Contrasting impacts of chemical and physical ageing on hydrochar properties and sorption of norfloxacin with coexisting Cu2+. Science of the Total Environment, 2021, 772, 145502.                                  | 3.9 | 20        |
| 6  | Tailored design of food waste hydrochar for efficient adsorption and catalytic degradation of refractory organic contaminant. Journal of Cleaner Production, 2021, 310, 127482.                                     | 4.6 | 52        |
| 7  | High-temperature and freeze-thaw aged biochar impacts on sulfonamide sorption and mobility in soil.<br>Chemosphere, 2021, 276, 130106.                                                                              | 4.2 | 40        |
| 8  | Insights into effects of ageing processes on Cd-adsorbed biochar stability and subsequent sorption performance. Environmental Pollution, 2021, 291, 118243.                                                         | 3.7 | 11        |
| 9  | O/N/P-doped biochar induced to enhance adsorption of sulfonamide with coexisting Cu2+/ Cr (VI) by air pre-oxidation. Bioresource Technology, 2021, 341, 125794.                                                     | 4.8 | 30        |
| 10 | Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in<br>groundwater. Journal of Hazardous Materials, 2020, 383, 121240.                                                 | 6.5 | 266       |
| 11 | FeCu-biochar enhances the removal of antibacterial sulfapyridine from groundwater by activation of persulfate. Environmental Chemistry Letters, 2020, 18, 1693-1700.                                                | 8.3 | 31        |
| 12 | Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: Mechanisms and pathway. Environmental Research, 2020, 183, 109156.                                          | 3.7 | 61        |
| 13 | Natural Organic Matter (NOM) Imparts Molecular-Weight-Dependent Steric Stabilization or<br>Electrostatic Destabilization to Ferrihydrite Nanoparticles. Environmental Science & Technology,<br>2020, 54, 6761-6770. | 4.6 | 61        |
| 14 | Oxidative ageing of biochar and hydrochar alleviating competitive sorption of Cd(II) and Cu(II).<br>Science of the Total Environment, 2020, 725, 138419.                                                            | 3.9 | 73        |
| 15 | A comparative study on biochar properties and Cd adsorption behavior under effects of ageing processes of leaching, acidification and oxidation. Environmental Pollution, 2019, 254, 113123.                        | 3.7 | 94        |
| 16 | Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar. Journal of Environmental Management, 2019, 235, 276-281.                                          | 3.8 | 108       |
| 17 | Boneâ€derived biochar and magnetic biochar for effective removal of fluoride in groundwater: Effects<br>of synthesis method and coexisting chromium. Water Environment Research, 2019, 91, 588-597.                 | 1.3 | 36        |
| 18 | New insights into contrasting mechanisms for PAE adsorption on millimeter, micron- and nano-scale<br>biochar. Environmental Science and Pollution Research, 2019, 26, 18636-18650.                                  | 2.7 | 52        |

JIAWEI CHEN

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Oxidative ageing induces change in the functionality of biochar and hydrochar: Mechanistic insights from sorption of atrazine. Environmental Pollution, 2019, 249, 1002-1010.                                                                        | 3.7 | 48        |
| 20 | A comparison of the effects of natural organic matter on sulfidated and nonsulfidated nanoscale<br>zerovalent iron colloidal stability, toxicity, and reactivity to trichloroethylene. Science of the Total<br>Environment, 2019, 671, 254-261.      | 3.9 | 60        |
| 21 | Highly efficient degradation of trichloroethylene in groundwater based on peroxymonosulfate<br>activation by bentonite supported Fe/Ni bimetallic nanoparticle. Chemosphere, 2019, 216, 499-506.                                                     | 4.2 | 57        |
| 22 | High molecular weight components of natural organic matter preferentially adsorb onto nanoscale zero valent iron and magnetite. Science of the Total Environment, 2018, 628-629, 177-185.                                                            | 3.9 | 23        |
| 23 | Kinetic and isothermal adsorption-desorption of PAEs on biochars: effect of biomass feedstock,<br>pyrolysis temperature, and mechanism implication of desorption hysteresis. Environmental Science<br>and Pollution Research, 2018, 25, 11493-11504. | 2.7 | 41        |
| 24 | A novel pyro-hydrochar via sequential carbonization of biomass waste: Preparation, characterization and adsorption capacity. Journal of Cleaner Production, 2018, 176, 187-195.                                                                      | 4.6 | 73        |
| 25 | Insight into mechanism of aged biochar for adsorption of PAEs: Reciprocal effects of ageing and coexisting Cd2+. Environmental Pollution, 2018, 242, 1098-1107.                                                                                      | 3.7 | 63        |
| 26 | Sorption and transport of sulfonamides in soils amended with wheat straw-derived biochar: effects of water pH, coexistence copper ion, and dissolved organic matter. Journal of Soils and Sediments, 2017, 17, 771-779.                              | 1.5 | 40        |
| 27 | Bismuth oxyiodide coupled with bismuth nanodots for enhanced photocatalytic bisphenol A degradation: synergistic effects and mechanistic insight. Nanoscale, 2017, 9, 15484-15493.                                                                   | 2.8 | 47        |
| 28 | Controllable synthesis of Titania‣upported Bismuth Oxyiodide Heterostructured Nanofibers with<br>Highly Exposed (1 1 0) Bismuth Oxyiodide Facets for Enhanced Photocatalytic Activity. ChemCatChem,<br>2016, 8, 3780-3789.                           | 1.8 | 25        |
| 29 | Enhanced degradation of trichloroethylene using bentonite-supported nanoscale Fe/Ni and humic acids. Environmental Chemistry Letters, 2016, 14, 237-242.                                                                                             | 8.3 | 13        |
| 30 | Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: Effects of production conditions and particle size. Chemosphere, 2016, 145, 336-341.                                                   | 4.2 | 354       |
| 31 | Effects of pH and ionic composition on sorption/desorption of natural organic matter on zero-valent iron and magnetite nanoparticles. Water Science and Technology, 2015, 72, 303-310.                                                               | 1.2 | 10        |
| 32 | A Field Experiment on Enhancement of Crop Yield by Rice Straw and Corn Stalk-Derived Biochar in Northern China. Sustainability, 2015, 7, 13713-13725.                                                                                                | 1.6 | 34        |
| 33 | One-step synthesis of bentonite-supported nanoscale Fe/Ni bimetals for rapid degradation of methyl orange in water. Environmental Chemistry Letters, 2014, 12, 461-466.                                                                              | 8.3 | 18        |
| 34 | Reduction of nitrate by bimetallic Fe/Ni nanoparticles. Environmental Technology (United Kingdom), 2012, 33, 2185-2192.                                                                                                                              | 1.2 | 28        |
| 35 | Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water<br>Research, 2011, 45, 1995-2001.                                                                                                                  | 5.3 | 245       |
| 36 | Fluorescence studies on local density change in supercritical CO2 mixtures using the order parameter model. Journal of Supercritical Fluids, 2011, 56, 1-5.                                                                                          | 1.6 | 3         |

Jiawei Chen

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Linear correlation of isothermal densities of fluid mixtures in near-critical region. High Temperature, 2010, 48, 295-298.                                                                                                       | 0.1 | 0         |
| 38 | Solvent Density Inhomogeneities in Supercritical CO2 by Pyrene Probe. Earth Science Frontiers, 2008, 15, 125-131.                                                                                                                | 0.5 | 5         |
| 39 | Residues and Characteristics of Organochlorine Pesticides in the Surface Water in the Suburb of<br>Beijing. Earth Science Frontiers, 2008, 15, 242-247.                                                                          | 0.5 | 54        |
| 40 | Enhanced Stabilization of Reverse Micelles by Compressed CO2. Chemistry - A European Journal, 2005, 11, 1228-1234.                                                                                                               | 1.7 | 16        |
| 41 | Phase Behavior, Densities, and Isothermal Compressibility of the CO2+ Ethanol + Dichloromethane<br>Ternary System in Different Phase Regions. Journal of Chemical & Engineering Data, 2005, 50,<br>1153-1156.                    | 1.0 | 7         |
| 42 | Solvatochromic behavior of phenol blue in CO2+ethanol and CO2+n-pentane mixtures in the critical region and local composition enhancement. Journal of Chemical Physics, 2005, 122, 204508.                                       | 1.2 | 13        |
| 43 | Phase Behavior, Densities, and Isothermal Compressibility of the CO2+ Pentane + Acetone Ternary<br>System in Various Phase Regions. Journal of Chemical & Engineering Data, 2004, 49, 537-543.                                   | 1.0 | 5         |
| 44 | Effect of phase behavior on the constant volume heat capacity of ethane + ethanol and ethane +<br>acetone mixed fluids near the critical region and the intermolecular interaction. Fluid Phase<br>Equilibria, 2003, 214, 53-65. | 1.4 | 4         |
| 45 | Phase Behavior, Densities, and Isothermal Compressibility of CO2+ Pentane and CO2+ Acetone Systems in Various Phase Regions, Journal of Chemical & amp: Engineering Data, 2003, 48, 1544-1548                                    | 1.0 | 51        |