Kepi Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8414262/publications.pdf

Version: 2024-02-01

		394286	360920
48	1,280	19	35
papers	citations	h-index	g-index
48	48	48	1307
70	70	70	1307
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Design and investigate the electrical properties of Pb(Mg0.2Zn0.2Nb0.2Ta0.2W0.2)O3–PbTiO3 high-entropy ferroelectric ceramics. Ceramics International, 2022, 48, 12848-12855.	2.3	16
2	Design and synthesis of high-entropy pyrochlore ceramics based on valence combination. Journal of the European Ceramic Society, 2022, 42, 5973-5983.	2.8	10
3	Entropy-stabilized oxides with medium configurational entropy. Ceramics International, 2021, 47, 9979-9983.	2.3	7
4	An anion-deficient high-entropy fluorite oxide with very low density. Ceramics International, 2021, 47, 21207-21211.	2.3	17
5	Porous (Ce0.2Zr0.2Ti0.2Sn0.2Ca0.2)O2-δ high-entropy ceramics with both high strength and low thermal conductivity. Journal of the European Ceramic Society, 2021, 41, 309-314.	2.8	15
6	High-entropy stoichiometric perovskite oxides based on valence combinations. Ceramics International, 2021, 47, 24348-24352.	2.3	29
7	Highâ €e ntropy oxides based on valence combinations: design and practice. Journal of the American Ceramic Society, 2021, 104, 1953-1958.	1.9	50
8	Preparation and characteristics of porous anorthite ceramics with high porosity and highâ€ŧemperature strength. International Journal of Applied Ceramic Technology, 2020, 17, 963-973.	1.1	18
9	Design and synthesis of chemically complex ceramics from the perspective of entropy. Materials Today Advances, 2020, 8, 100114.	2.5	24
10	Ca2+ doping effects in (K, Na, Li)(Nb0.8Ta0.2)O3 lead-free piezoelectric ceramics. Frontiers of Materials Science, 2019, 13, 431-438.	1.1	0
11	A five-component entropy-stabilized fluorite oxide. Journal of the European Ceramic Society, 2018, 38, 4161-4164.	2.8	251
12	Fabrication and properties of porous anorthite ceramics with modelling pore structure. Materials Letters, 2017, 190, 95-98.	1.3	29
13	Effects of Ge4+ acceptor dopant on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics. Frontiers of Materials Science, 2017, 11, 59-65.	1.1	5
14	Non-contact electric field-enhanced abnormal grain growth in (KO.5NaO.5)NbO3 ceramics. Ceramics International, 2017, 43, 12343-12347.	2.3	10
15	Eliminating the negative effect of monoclinic Nb ₂ O ₅ on electrical properties of (K _{0.5} Na _{0.5})NbO ₃ ceramics by twoâ€step sintering. International Journal of Applied Ceramic Technology, 2017, 14, 987-991.	1.1	2
16	Effects of acceptor doping on sintering and piezoelectric propertiesÂofÂ(K0.4825Na0.4825Li0.035)(Nb0.8Ta0.2)O3 lead-free piezoelectric ceramics. Journal of Alloys and Compounds, 2017, 695, 3364-3369.	2.8	6
17	Effects of GeO ₂ Addition on Sintering and Properties of (K _{0.5} Na _{0.5})NbO ₃ Ceramics. Journal of the American Ceramic Society, 2016, 99, 1681-1686.	1.9	12
18	Compositional inhomogeneity and segregation in (K0.5Na0.5)NbO3 ceramics. Ceramics International, 2016, 42, 9949-9954.	2.3	8

#	Article	IF	Citations
19	Enhanced Fieldâ€Induced Strain in the Textured Leadâ€Free Ceramic. Journal of the American Ceramic Society, 2016, 99, 3985-3992.	1.9	15
20	Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping. Frontiers of Materials Science, 2016, 10, 422-427.	1.1	5
21	Acceptor doping effects in (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Ceramics International, 2016, 42, 2899-2903.	2.3	38
22	Effect of borax addition on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics. Ceramics International, 2015, 41, 10232-10236.	2.3	17
23	Screening Sintering Aids for (K _{0.5} Na _{0.5})NbO ₃ Ceramics. Journal of the American Ceramic Society, 2015, 98, 1698-1701.	1.9	29
24	Grain refining in spark plasma sintering Al2O3 ceramics. Journal of Alloys and Compounds, 2015, 622, 596-600.	2.8	22
25	Low Temperature Sintering of (Ba _{0.98} Ca _{0.02})(Sn _{0.04} Ti _{0.96})O ₃ Ceramics Using CuO-B ₂ O ₃ as a Sintering Additive. Key Engineering Materials, 2014, 602-603, 813-816.	0.4	O
26	Analyses of Cascading Failure in Mine Ventilation System and Its Effects in a Serious Mine Gas Explosion Disaster. Journal of Failure Analysis and Prevention, 2013, 13, 538-544.	0.5	9
27	Electrical, dielectric and mechanical properties of a novel Ti3AlC2/epoxy resin conductive composites. Materials Letters, 2013, 110, 61-64.	1.3	16
28	BiCoO3-doped (K0.475Na0.475Li0.05)(Nb0.8Ta0.2)O3 lead-free piezoelectric ceramics. Frontiers of Materials Science, 2012, 6, 311-318.	1.1	0
29	An Approach to Improve the Piezoelectric Property of (Bi _{0.5} Na _{0.5})TiO ₃ –(Bi _{0.5} K _{0.5})TiO ₃ Leadâ€Free Ceramics. International Journal of Applied Ceramic Technology, 2011, 8, 423-429.	ub ı– Ba ⁻	Γi ⊙ ∕sub>3 ⟨
30	Synthesis of calcium copper titanate ceramics via the molten salts method. Ceramics International, 2010, 36, 1523-1527.	2.3	26
31	Morphotropic phase boundary and electrical properties of K1 \hat{a} °xNaxNbO3 lead-free ceramics. Applied Physics Letters, 2009, 94, .	1.5	193
32	Study of the electrical properties of Pb(Zn,Ni)1/3Nb2/3O3–PbTiO3 ceramics across the morphotropic phase boundary. Journal of Electroceramics, 2008, 21, 549-552.	0.8	0
33	Making Nanostructured Ceramics from Micrometerâ€Sized Powders via Grain Refinement During SPS Sintering. Journal of the American Ceramic Society, 2008, 91, 2475-2480.	1.9	20
34	Study of the structure and electrical properties of PMN-PNN-PT ceramics near the morphotropic phase boundary. Journal of Electroceramics, 2006, 16, 109-114.	0.8	25
35	Field-induced effect in the <111>-oriented 0.70Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 single crystals. Materials Letters, 2006, 60, 1634-1639.	1.3	8
36	Growth mechanism of relaxor-PbTiO3 single crystals shown by morphology of crystalline grains in ceramics. Journal of Crystal Growth, 2005, 284, 275-280.	0.7	8

#	Article	IF	CITATIONS
37	Structure and dielectric properties of Pb(Zn0.2Ni0.8)1/3Nb2/3O3–PbTiO3 ferroelectric ceramic near the morphotropic phase boundary. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 121, 261-265.		7
38	Ferroelectric 90o Domain Evaluation in Tetragonal Pb(Mg1/3Nb2/3)O3-PbTiO3 Ceramics. Journal of the American Ceramic Society, 2005, 88, 335-338.	1.9	29
39	Structure and dielectric relaxation behavior near the MPB for Pb(Mg1/3Nb2/3)O3–Pb(Ni1/3Nb2/3)O3–PbTiO3 ferroelectric ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 111, 107-112.	1.7	22
40	Study of the Electrical Properties of Pb(Mg,Ni) $1/3$ Nb $2/3$ O3-PbTiO3System Across the Morphotropic Phase Boundary. , 2003, 10, 233-239.		4
41	Morphotropic phase boundary in Pb(Ni1/3Nb2/3)O3–PbTiO3 solid solution system. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 99, 487-490.	1.7	9
42	Effect of composition and poling field on the properties and ferroelectric phase-stability of Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals. Journal of Applied Physics, 2002, 92, 6134-6138.	1.1	99
43	Electric-field-induced phase transition in Â001Â-oriented Pb(Mg1/3Nb2/3)O3-PbTiO3single crystals. Journal of Physics Condensed Matter, 2002, 14, L571-L576.	0.7	33
44	Dielectric and ferroelectric properties of Pb(Ni1/3Nb2/3)O3–PbTiO3 ferroelectic ceramic near the morphotropic phase boundary. Materials Letters, 2002, 54, 8-12.	1.3	33
45	Microstructure and electrical properties of 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 ceramics by spark plasma sintering. Materials Letters, 2002, 57, 20-23.	1.3	12
46	Study of the structure and dielectric relaxation behavior of Pb(Ni1/3Nb2/3)–PbTiO3 ferroelectric ceramics. Solid State Communications, 2002, 123, 445-450.	0.9	54
47	Title is missing!. Journal of Materials Science Letters, 2002, 21, 1785-1787.	0.5	5
48	Structure and implication of morphotropic phase boundary for Pb(Mg1/3Nb2/3)O3-PbTiO3ferroelectric ceramics. Ferroelectrics, 2001, 261, 155-160.	0.3	6