
## Wei Yang

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8414219/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Receptor-interacting protein kinase 2 (RIPK2) stabilizes c-Myc and is a therapeutic target in prostate cancer metastasis. Nature Communications, 2022, 13, 669.                                                 | 12.8 | 19        |
| 2  | BoxCar and shotgun proteomic analyses reveal molecular networks regulated by UBR5 in prostate cancer. Proteomics, 2022, 22, e2100172.                                                                           | 2.2  | 2         |
| 3  | Early innate immune responses in different COVIDâ€19 subâ€phenotypes through a transcriptomics lens.<br>Clinical and Translational Discovery, 2022, 2, .                                                        | 0.5  | 0         |
| 4  | Antioxidant functions of DHHC3 suppress anti-cancer drug activities. Cellular and Molecular Life Sciences, 2021, 78, 2341-2353.                                                                                 | 5.4  | 12        |
| 5  | Proteome-Scale Analysis of Protein <i>S</i> -Acylation Comes of Age. Journal of Proteome Research, 2021, 20, 14-26.                                                                                             | 3.7  | 19        |
| 6  | A Transcriptional Regulatory Loop of Master Regulator Transcription Factors, PPARG, and Fatty Acid<br>Synthesis Promotes Esophageal Adenocarcinoma. Cancer Research, 2021, 81, 1216-1229.                       | 0.9  | 41        |
| 7  | Molecular mechanisms of esophageal epithelial regeneration following repair of surgical defects with acellular silk fibroin grafts. Scientific Reports, 2021, 11, 7086.                                         | 3.3  | 3         |
| 8  | Interplay and cooperation between SREBF1 and master transcription factors regulate lipid metabolism and tumor-promoting pathways in squamous cancer. Nature Communications, 2021, 12, 4362.                     | 12.8 | 50        |
| 9  | A neuroanatomical basis for electroacupunctureÂto drive the vagal–adrenal axis. Nature, 2021, 598,<br>641-645.                                                                                                  | 27.8 | 289       |
| 10 | On the Road to Accurate Protein Biomarkers in Prostate Cancer Diagnosis and Prognosis: Current<br>Status and Future Advances. International Journal of Molecular Sciences, 2021, 22, 13537.                     | 4.1  | 11        |
| 11 | EWS-FLI1 regulates and cooperates with core regulatory circuitry in Ewing sarcoma. Nucleic Acids Research, 2020, 48, 11434-11451.                                                                               | 14.5 | 18        |
| 12 | <i>&gt;S</i> -Palmitoylation as a Functional Regulator of Proteins Associated with Cisplatin Resistance in<br>Bladder Cancer. International Journal of Biological Sciences, 2020, 16, 2490-2505.                | 6.4  | 26        |
| 13 | Sex as a Determinant of Responses to a Coronary Artery Disease Self-Antigen Identified by<br>Immune-Peptidomics. Frontiers in Immunology, 2020, 11, 694.                                                        | 4.8  | 3         |
| 14 | Androgens modify therapeutic response to cabazitaxel in models of advanced prostate cancer.<br>Prostate, 2020, 80, 926-937.                                                                                     | 2.3  | 3         |
| 15 | TP63, SOX2, and KLF5 Establish a Core Regulatory Circuitry That Controls Epigenetic and Transcription<br>Patterns in Esophageal Squamous Cell Carcinoma Cell Lines. Gastroenterology, 2020, 159, 1311-1327.e19. | 1.3  | 92        |
| 16 | Comprehensive palmitoylâ€proteomic analysis identifies distinct protein signatures for large and small<br>cancerâ€derived extracellular vesicles. Journal of Extracellular Vesicles, 2020, 9, 1764192.          | 12.2 | 37        |
| 17 | Inhibition of collagen XI alpha 1-induced fatty acid oxidation triggers apoptotic cell death in cisplatin-resistant ovarian cancer. Cell Death and Disease, 2020, 11, 258.                                      | 6.3  | 49        |
| 18 | Proteomic profiling of bladder cancer for precision medicine in the clinical setting: A review for the busy urologist. Investigative and Clinical Urology, 2020, 61, 539.                                       | 2.0  | 3         |

Wei Yang

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Low-Background Acyl-Biotinyl Exchange Largely Eliminates the Coisolation of Non- <i>S</i> -Acylated<br>Proteins and Enables Deep <i>S</i> -Acylproteomic Analysis. Analytical Chemistry, 2019, 91, 9858-9866.        | 6.5 | 32        |
| 20 | Proteomic Analysis Identifies Membrane Proteins Dependent on the ER Membrane Protein Complex. Cell<br>Reports, 2019, 28, 2517-2526.e5.                                                                               | 6.4 | 53        |
| 21 | Quantitative proteomic analysis of prostate tissue specimens identifies deregulated protein complexes in primary prostate cancer. Clinical Proteomics, 2019, 16, 15.                                                 | 2.1 | 15        |
| 22 | Keratin 8 is a potential self-antigen in the coronary artery disease immunopeptidome: A translational approach. PLoS ONE, 2019, 14, e0213025.                                                                        | 2.5 | 28        |
| 23 | Ultradeep Palmitoylâ€proteomic Analysis Uncovers Over 1,300 Novel Human Palmitoylâ€proteins. FASEB<br>Journal, 2019, 33, 632.15.                                                                                     | 0.5 | 0         |
| 24 | Super-Enhancer-Driven Long Non-Coding RNA LINC01503, Regulated by TP63, Is Over-Expressed and Oncogenic in Squamous Cell Carcinoma. Gastroenterology, 2018, 154, 2137-2151.e1.                                       | 1.3 | 165       |
| 25 | Ethanol Induced Disordering of Pancreatic Acinar Cell Endoplasmic Reticulum: An ER Stress/Defective<br>Unfolded Protein Response Model. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5,<br>479-497. | 4.5 | 19        |
| 26 | FOXC1-induced non-canonical WNT5A-MMP7 signaling regulates invasiveness in triple-negative breast cancer. Oncogene, 2018, 37, 1399-1408.                                                                             | 5.9 | 67        |
| 27 | Emerin Deregulation Links Nuclear Shape Instability to Metastatic Potential. Cancer Research, 2018, 78,<br>6086-6097.                                                                                                | 0.9 | 49        |
| 28 | Personalization of prostate cancer therapy through phosphoproteomics. Nature Reviews Urology, 2018, 15, 483-497.                                                                                                     | 3.8 | 25        |
| 29 | Transcriptome and proteome characterization of surface ectoderm cells differentiated from human iPSCs. Scientific Reports, 2016, 6, 32007.                                                                           | 3.3 | 25        |
| 30 | Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget, 2015, 6, 11327-11341.                                                  | 1.8 | 289       |
| 31 | Regulation of microtubule dynamics by DIAPH3 influences amoeboid tumor cell mechanics and sensitivity to taxanes. Scientific Reports, 2015, 5, 12136.                                                                | 3.3 | 48        |
| 32 | Targeting metabolic plasticity in breast cancer cells via mitochondrial complex I modulation. Breast<br>Cancer Research and Treatment, 2015, 150, 43-56.                                                             | 2.5 | 18        |
| 33 | Technologies and Challenges in Proteomic Analysis of Protein S-acylation. Journal of Proteomics and<br>Bioinformatics, 2014, 07, 256-263.                                                                            | 0.4 | 18        |
| 34 | Integration of proteomic and transcriptomic profiles identifies a novel PDGF-MYC network in human smooth muscle cells. Cell Communication and Signaling, 2014, 12, 44.                                               | 6.5 | 24        |
| 35 | Caveolin-1 and Prostate Cancer Progression. Advances in Experimental Medicine and Biology, 2012, 729, 95-110.                                                                                                        | 1.6 | 33        |
| 36 | 'Omics' Approaches to Understanding Interstitial Cystitis/Painful Bladder Syndrome/Bladder Pain<br>Syndrome. International Neurourology Journal, 2012, 16, 159.                                                      | 1.2 | 19        |

Wei Yang

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Integration analysis of quantitative proteomics and transcriptomics data identifies potential targets<br>of frizzledâ€8 proteinâ€related antiproliferative factor <i>in vivo</i> . BJU International, 2012, 110, E1138-46. | 2.5 | 14        |
| 38 | Proteomic analysis of palmitoylated platelet proteins. Blood, 2011, 118, e62-e73.                                                                                                                                          | 1.4 | 105       |
| 39 | Quantitative Proteomics Identifies a β-Catenin Network as an Element of the Signaling Response to<br>Frizzled-8 Protein-Related Antiproliferative Factor. Molecular and Cellular Proteomics, 2011, 10,<br>M110.007492.     | 3.8 | 31        |
| 40 | A Genomic Predictor of Response and Survival Following Taxane-Anthracycline Chemotherapy for<br>Invasive Breast Cancer. JAMA - Journal of the American Medical Association, 2011, 305, 1873.                               | 7.4 | 531       |
| 41 | Multi-stage motion vector prediction schedule strategy for AVS HD encoder. , 2010, , .                                                                                                                                     |     | 4         |
| 42 | Proteome Scale Characterization of Human S-Acylated Proteins in Lipid Raft-enriched and Non-raft<br>Membranes. Molecular and Cellular Proteomics, 2010, 9, 54-70.                                                          | 3.8 | 252       |
| 43 | Quantitative Proteomics Analysis Reveals Molecular Networks Regulated by Epidermal Growth Factor<br>Receptor Level in Head and Neck Cancer. Journal of Proteome Research, 2010, 9, 3073-3082.                              | 3.7 | 26        |
| 44 | Oncosome Formation in Prostate Cancer: Association with a Region of Frequent Chromosomal Deletion in Metastatic Disease. Cancer Research, 2009, 69, 5601-5609.                                                             | 0.9 | 325       |
| 45 | Rapid preparation of nuclei-depleted detergent-resistant membrane fractions suitable for proteomics analysis. BMC Cell Biology, 2008, 9, 30.                                                                               | 3.0 | 44        |
| 46 | Proteomic approaches to the analysis of multiprotein signaling complexes. Proteomics, 2008, 8, 832-851.                                                                                                                    | 2.2 | 45        |
| 47 | Proteomic analysis of rat pheochromocytoma PC12 cells. Proteomics, 2006, 6, 2982-2990.                                                                                                                                     | 2.2 | 30        |
| 48 | Proteomic analysis and comparison of the biopsy and autopsy specimen of human brain temporal lobe.<br>Proteomics, 2006, 6, 4987-4996.                                                                                      | 2.2 | 29        |
| 49 | A Small Molecule Agonist of an Integrin, αLβ2. Journal of Biological Chemistry, 2006, 281, 37904-37912.                                                                                                                    | 3.4 | 36        |
| 50 | Induction of Apoptosis in Mouse Liver by Microcystin-LR. Molecular and Cellular Proteomics, 2005, 4, 958-974.                                                                                                              | 3.8 | 126       |
| 51 | Activation of integrin Â-subunit I-like domains by one-turn C-terminal Â-helix deletions. Proceedings of<br>the National Academy of Sciences of the United States of America, 2004, 101, 2333-2338.                        | 7.1 | 61        |
| 52 | Intersubunit signal transmission in integrins by a receptor-like interaction with a pull spring.<br>Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2906-2911.                 | 7.1 | 87        |
| 53 | Differential Display Proteome Analysis of PC-12 Cells Transiently Transfected with Metallothionein-3<br>Gene. Journal of Proteome Research, 2004, 3, 126-131.                                                              | 3.7 | 9         |
| 54 | A Small-Molecule Antagonist to Integrin LFA-1 Reveals a Crucial Inter-Domain Communication as a<br>Novel Therapeutic Target Blood, 2004, 104, 650-650.                                                                     | 1.4 | 0         |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Coexpression of DNA Fragmentation Factor Subunits in E.coli by Two Incompatible Plasmids. Sheng Wu<br>Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochimica Et Biophysica Sinica, 2001, 33, 238-242.                        | 0.1 | 0         |
| 56 | Recombinant Human DFF45 Inhibits Apoptosis-specific Endonuclease in a Cell-free System of Xenopus<br>Egg Extracts. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochimica Et Biophysica Sinica, 2001,<br>33, 82-86. | 0.1 | 0         |