Jianping Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8413839/publications.pdf Version: 2024-02-01

LIANDING WU

#	Article	IF	CITATIONS
1	Peptides GWN and GW protect kidney cells against Dasatinib induced mitochondrial injury in a SIRT1 dependent manner. Food Chemistry Molecular Sciences, 2022, 4, 100069.	0.9	3
2	A comprehensive review on the glucoregulatory properties of food-derived bioactive peptides. Food Chemistry: X, 2022, 13, 100222.	1.8	11
3	Evaluation of the anti-osteoporotic effect of a low-phenylalanine whey protein hydrolysate in an ovariectomized mice model. Food and Function, 2022, 13, 3957-3967.	2.1	3
4	Purification and characterization of hypoglycemic peptides from traditional Chinese soy-fermented <i>douchi</i> . Food and Function, 2022, 13, 3343-3352.	2.1	13
5	Structure and activity study of tripeptide IRW in TNF-α induced insulin resistant skeletal muscle cells. Food and Function, 2022, 13, 4061-4068.	2.1	3
6	Chicken muscle hydrolysate reduces blood pressure in spontaneously hypertensive rats, upregulates ACE2, and ameliorates vascular inflammation, fibrosis, and oxidative stress. Journal of Food Science, 2022, 87, 1292-1305.	1.5	10
7	Bioactive Peptides: From Basic Research to Clinical Trials and Commercialization. Journal of Agricultural and Food Chemistry, 2022, 70, 3585-3595.	2.4	40
8	Antioxidant Stress and Anti-Inflammatory Activities of Egg White Proteins and Their Derived Peptides: A Review. Journal of Agricultural and Food Chemistry, 2022, 70, 5-20.	2.4	21
9	Conventional use and sustainable valorization of spent egg-laying hens as functional foods and biomaterials: A review. Bioresources and Bioprocessing, 2022, 9, 43.	2.0	16
10	Chicken Muscle-Derived ACE2 Upregulating Peptide VVHPKESF Inhibits Angiotensin II-Stimulated Inflammation in Vascular Smooth Muscle Cells <i>via</i> the ACE2/Ang (1–7)/MasR Axis. Journal of Agricultural and Food Chemistry, 2022, 70, 6397-6406.	2.4	6
11	IRW (Isoleucine–Arginine–Tryptophan) Improves Glucose Tolerance in High Fat Diet Fed C57BL/6 Mice via Activation of Insulin Signaling and AMPK Pathways in Skeletal Muscle. Biomedicines, 2022, 10, 1235.	1.4	4
12	Tripeptide IRW Protects MC3T3-E1 Cells against Ang II Stress in an AT2R Dependent Manner. Molecules, 2022, 27, 3684.	1.7	0
13	Chicken Muscle Proteinâ€Derived Peptide VVHPKESF Reduces TNFαâ€Induced Inflammation and Oxidative Stress by Suppressing TNFR1 Signaling in Human Vascular Endothelial Cells. Molecular Nutrition and Food Research, 2022, 66, .	1.5	8
14	Bionanocomposites from spent hen proteins reinforced with polyhedral oligomeric silsesquioxane (POSS)/cellulose nanocrystals (CNCs). Biocatalysis and Agricultural Biotechnology, 2022, , 102434.	1.5	0
15	A review on mechanisms of action of bioactive peptides against glucose intolerance and insulin resistance. Food Science and Human Wellness, 2022, 11, 1441-1454.	2.2	7
16	The ACE2/Ang (1–7)/MasR axis as an emerging target for antihypertensive peptides. Critical Reviews in Food Science and Nutrition, 2021, 61, 2572-2586.	5.4	25
17	Purification and identification of novel ACE inhibitory and ACE2 upregulating peptides from spent hen muscle proteins. Food Chemistry, 2021, 345, 128867.	4.2	28
18	Novel technologies for the production of bioactive peptides. Trends in Food Science and Technology, 2021, 108, 27-39.	7.8	157

#	Article	IF	CITATIONS
19	Translating bioactive peptides for COVID-19 therapy. European Journal of Pharmacology, 2021, 890, 173661.	1.7	15
20	CRISPR–Cas systems in bioactive peptide research. , 2021, , 285-307.		0
21	CHAPTER 15. Food Peptides in Blood Pressure Regulation. Food Chemistry, Function and Analysis, 2021, , 371-401.	0.1	4
22	Applications in medicine: hypoglycemic peptides. , 2021, , 607-628.		0
23	Tripeptide IRW Upregulates NAMPT Protein Levels in Cells and Obese C57BL/6J Mice. Journal of Agricultural and Food Chemistry, 2021, 69, 1555-1566.	2.4	16
24	Spent Hen Muscle Protein-Derived RAS Regulating Peptides Show Antioxidant Activity in Vascular Cells. Antioxidants, 2021, 10, 290.	2.2	25
25	Peptides in Brewed Wines: Formation, Structure, and Function. Journal of Agricultural and Food Chemistry, 2021, 69, 2647-2657.	2.4	14
26	Peptide Analogues of VPP and IPP with Improved Glucose Uptake Activity in L6 Myotubes can be Released from Cereal Proteins. Journal of Agricultural and Food Chemistry, 2021, 69, 2875-2883.	2.4	8
27	Antioxidant peptides derived from hydrolysates of red tilapia (Oreochromis sp.) scale. LWT - Food Science and Technology, 2021, 146, 111631.	2.5	36
28	Mitofusion is required for MOTSâ€ ϵ induced GLUT4 translocation. Scientific Reports, 2021, 11, 14291.	1.6	11
29	Amylase enhances production of low molecular weight collagen peptides from the skin of spent hen, bovine, porcine, and tilapia. Food Chemistry, 2021, 352, 129355.	4.2	15
30	Impact of food-derived bioactive peptides on gut function and health. Food Research International, 2021, 147, 110485.	2.9	30
31	Methodologies for bioactivity assay: cell study. , 2021, , 155-189.		1
32	Milk proteins and their derived peptides on bone health: Biological functions, mechanisms, and prospects. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2234-2262.	5.9	13
33	Optimization of Enzymatic Hydrolysis for Preparing Cassava Leaf Hydrolysate with Antioxidant Activity. Food and Bioprocess Technology, 2021, 14, 2181-2194.	2.6	12
34	Egg white ovomucin hydrolysate inhibits intestinal integrity damage in LPS-treated Caco-2 cells. Journal of Functional Foods, 2021, 87, 104822.	1.6	8
35	Royal Jelly Proteins and Their Derived Peptides: Preparation, Properties, and Biological Activities. Journal of Agricultural and Food Chemistry, 2021, 69, 14415-14427.	2.4	9
36	Zein hydrolysate and its peptides exert anti-inflammatory activity on endothelial cells by preventing TNF-α-induced NF-κB activation. Journal of Functional Foods, 2020, 64, 103598.	1.6	26

#	Article	IF	CITATIONS
37	Formation of bioactive peptides during simulated gastrointestinal digestion is affected by αs1-casein polymorphism in buffalo milk. Food Chemistry, 2020, 313, 126159.	4.2	13
38	Safety considerations on food protein-derived bioactive peptides. Trends in Food Science and Technology, 2020, 96, 199-207.	7.8	76
39	Spent Hen Protein Hydrolysate with Good Gastrointestinal Stability and Permeability in Caco-2 Cells Shows Antihypertensive Activity in SHR. Foods, 2020, 9, 1384.	1.9	26
40	Phosvitin Derived Phospho-Peptides Show Better Osteogenic Potential than Intact Phosvitin in MC3T3-E1 Osteoblastic Cells. Nutrients, 2020, 12, 2998.	1.7	8
41	A Novel Angiotensin Converting Enzyme 2 (ACE2) Activating Peptide: A Reflection of 10 Years of Research on a Small Peptide Ile-Arg-Trp (IRW). Journal of Agricultural and Food Chemistry, 2020, 68, 14402-14408.	2.4	13
42	Thermal stable characteristics of acid- and pepsin-soluble collagens from the carapace tissue of Chinese soft-shelled turtle (Pelodiscus sinensis). Tissue and Cell, 2020, 67, 101424.	1.0	10
43	Effect of Phospholipase A1 and High-Pressure Homogenization on the Stability, Toxicity, and Permeability of Egg Yolk/Fish Oil Emulsions. Journal of Agricultural and Food Chemistry, 2020, 68, 9081-9089.	2.4	1
44	Pea protein-derived tripeptide LRW shows osteoblastic activity on MC3T3-E1 cells <i>via</i> the activation of the Akt/Runx2 pathway. Food and Function, 2020, 11, 7197-7207.	2.1	16
45	Ovotransferrin Exhibits Osteogenic Activity Partially via Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Activation in MC3T3-E1 Cells. Journal of Agricultural and Food Chemistry, 2020, 68, 9427-9435.	2.4	7
46	Naturally occurring low molecular peptides identified in egg white show antioxidant activity. Food Research International, 2020, 138, 109766.	2.9	22
47	Purification and identification of angiotensin II type I receptor downregulating peptide from egg white hydrolysate. Journal of Food Biochemistry, 2020, 44, e13220.	1.2	4
48	Egg-Derived Tripeptide IRW Attenuates LPS-Induced Osteoclastogenesis in RAW 264.7 Macrophages via Inhibition of Inflammatory Responses and NF-κB/MAPK Activation. Journal of Agricultural and Food Chemistry, 2020, 68, 6132-6141.	2.4	16
49	Regulatory Effects of a Pea-Derived Peptide Leu-Arg-Trp (LRW) on Dysfunction of Rat Aortic Vascular Smooth Muscle Cells against Angiotensin II Stimulation. Journal of Agricultural and Food Chemistry, 2020, 68, 3947-3953.	2.4	24
50	Preparation and characterization of a low-phenylalanine whey hydrolysate using two-step enzymatic hydrolysis and macroporous resin adsorption. LWT - Food Science and Technology, 2020, 132, 109753.	2.5	24
51	Identification of immunomodulatory peptides from zein hydrolysates. European Food Research and Technology, 2020, 246, 931-937.	1.6	23
52	Dietary peptides in aging: Evidence and prospects. Food Science and Human Wellness, 2020, 9, 1-7.	2.2	21
53	Perspectives on the Potential Benefits of Antihypertensive Peptides towards Metabolic Syndrome. International Journal of Molecular Sciences, 2020, 21, 2192.	1.8	23
54	Egg white hydrolysate and peptide reverse insulin resistance associated with tumor necrosis factor-α (TNF-α) stimulated mitogen-activated protein kinase (MAPK) pathway in skeletal muscle cells. European Journal of Nutrition, 2019, 58, 1961-1969.	1.8	29

#	Article	IF	CITATIONS
55	Molecular interactions, bioavailability, and cellular mechanisms of angiotensin-converting enzyme inhibitory peptides. Journal of Food Biochemistry, 2019, 43, e12572.	1.2	71
56	Preparation, Bioavailability, and Mechanism of Emerging Activities of Ileâ€Proâ€Pro and Valâ€Proâ€Pro. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1097-1110.	5.9	28
57	Preparation of low-molecular-weight, collagen hydrolysates (peptides): Current progress, challenges, and future perspectives. Food Chemistry, 2019, 301, 125222.	4.2	139
58	Identification of angiotensin converting enzyme 2 (ACE2) up-regulating peptides from pea protein hydrolysate. Journal of Functional Foods, 2019, 60, 103395.	1.6	41
59	Encapsulation of Long hain <i>n</i> â€3 Polyunsaturated Fatty Acids Using Egg Yolk. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 1347-1356.	0.8	8
60	Egg White Ovotransferrin Attenuates RANKL-Induced Osteoclastogenesis and Bone Resorption. Nutrients, 2019, 11, 2254.	1.7	13
61	Hen collagen hydrolysate alleviates UVA-induced damage in human dermal fibroblasts. Journal of Functional Foods, 2019, 63, 103574.	1.6	19
62	Hen protein-derived peptides as the blockers of human bitter taste receptors T2R4, T2R7 and T2R14. Food Chemistry, 2019, 283, 621-627.	4.2	39
63	Identification and Characterization of Gastrointestinal-Resistant Angiotensin-Converting Enzyme Inhibitory Peptides from Egg White Proteins. Journal of Agricultural and Food Chemistry, 2019, 67, 7147-7156.	2.4	44
64	Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. Journal of Functional Foods, 2019, 58, 123-129.	1.6	122
65	Glycopeptides from egg white ovomucin inhibit K88ac enterotoxigenic Escherichia coli adhesion to porcine small intestinal epithelial cell-line. Journal of Functional Foods, 2019, 54, 320-328.	1.6	11
66	Egg White–Derived Antihypertensive Peptide IRW (lleâ€Argâ€Trp) Reduces Blood Pressure in Spontaneously Hypertensive Rats via the ACE2/Ang (1â€7)/Mas Receptor Axis. Molecular Nutrition and Food Research, 2019, 63, e1900063.	1.5	60
67	Tripeptide IRW initiates differentiation in osteoblasts via the RUNX2 pathway. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1138-1146.	1.1	29
68	Hybrid Bionanocomposites from Spent Hen Proteins. ACS Omega, 2019, 4, 3772-3781.	1.6	22
69	Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends in Food Science and Technology, 2019, 86, 399-411.	7.8	193
70	Mechanism and Potential of Egg Consumption and Egg Bioactive Components on Type-2 Diabetes. Nutrients, 2019, 11, 357.	1.7	23
71	Sodium Chloride Suppresses the Bitterness of Protein Hydrolysates by Decreasing Hydrophobic Interactions. Journal of Food Science, 2019, 84, 86-91.	1.5	18
72	Spent hen-derived ACE inhibitory peptide IWHHT shows antioxidative and anti-inflammatory activities in endothelial cells. Journal of Functional Foods, 2019, 53, 85-92.	1.6	15

#	Article	IF	CITATIONS
73	Current understanding of transport and bioavailability of bioactive peptides derived from dairy proteins: a review. International Journal of Food Science and Technology, 2019, 54, 1930-1941.	1.3	27
74	Phosvitin and its hydrolysate promote differentiation and inhibit TNF-É' induced inflammation in MC3T3-E1 cells via ERK and AKT pathways. Journal of Functional Foods, 2019, 53, 259-265.	1.6	3
75	Evaluation of astaxanthin incorporated collagen film developed from the outer skin waste of squid Doryteuthis singhalensis for wound healing and tissue regenerative applications. Materials Science and Engineering C, 2019, 95, 29-42.	3.8	52
76	Egg White Ovotransferrin Shows Osteogenic Activity in Osteoblast Cells. Journal of Agricultural and Food Chemistry, 2018, 66, 2775-2782.	2.4	17
77	Canola Protein: A Promising Protein Source for Delivery, Adhesive, and Material Applications. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1075-1090.	0.8	25
78	Formation and characterization of peptides in egg white during storage at ambient temperature. Food Chemistry, 2018, 263, 135-141.	4.2	22
79	Purification and identification of anti-inflammatory peptides from spent hen muscle proteins hydrolysate. Food Chemistry, 2018, 253, 101-107.	4.2	58
80	Egg White Ovotransferrinâ€Derived ACE Inhibitory Peptide Ameliorates Angiotensin IIâ€Stimulated Insulin Resistance in Skeletal Muscle Cells. Molecular Nutrition and Food Research, 2018, 62, 1700602.	1.5	35
81	Chemically Modified Canola Protein–Nanomaterial Hybrid Adhesive Shows Improved Adhesion and Water Resistance. ACS Sustainable Chemistry and Engineering, 2018, 6, 1152-1161.	3.2	56
82	Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins. Materials Science and Engineering C, 2018, 90, 446-453.	3.8	56
83	Egg White-Derived Antihypertensive Peptide IRW (Ile-Arg-Trp) Inhibits Angiotensin Il-Stimulated Migration of Vascular Smooth Muscle Cells via Angiotensin Type I Receptor. Journal of Agricultural and Food Chemistry, 2018, 66, 5133-5138.	2.4	30
84	Pretreatment with formic acid enhances the production of small peptides from highly cross-linked collagen of spent hens. Food Chemistry, 2018, 258, 174-180.	4.2	22
85	Chicken collagen hydrolysates differentially mediate anti-inflammatory activity and type I collagen synthesis on human dermal fibroblasts. Food Science and Human Wellness, 2018, 7, 138-147.	2.2	47
86	Purification and identification of adipogenic-differentiating peptides from egg white hydrolysate. Food Chemistry, 2018, 259, 25-30.	4.2	36
87	Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chemistry, 2018, 245, 205-222.	4.2	379
88	Molecular targets and mechanisms of bioactive peptides against metabolic syndromes. Food and Function, 2018, 9, 42-52.	2.1	51
89	Identification of New Anti-inflammatory Peptides from Zein Hydrolysate after Simulated Gastrointestinal Digestion and Transport in Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2018, 66, 1114-1120.	2.4	65
90	Randomly Oriented Strand Board Composites from Nanoengineered Protein-Based Wood Adhesive. ACS Sustainable Chemistry and Engineering, 2018, 6, 457-466.	3.2	12

#	Article	IF	CITATIONS
91	Protein-Resistant Property of Egg White Ovomucin under Different pHs and Ionic Strengths. Journal of Agricultural and Food Chemistry, 2018, 66, 11034-11042.	2.4	8
92	Stability and Transport of Spent Hen-Derived ACE-Inhibitory Peptides IWHHT, IWH, and IW in Human Intestinal Caco-2 Cell Monolayers. Journal of Agricultural and Food Chemistry, 2018, 66, 11347-11354.	2.4	30
93	Egg White-Derived Tripeptide IRW (Ile-Arg-Trp) Is an Activator of Angiotensin Converting Enzyme 2. Journal of Agricultural and Food Chemistry, 2018, 66, 11330-11336.	2.4	35
94	Milk-Derived Tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) Enhance Insulin Sensitivity and Prevent Insulin Resistance in 3T3-F442A Preadipocytes. Journal of Agricultural and Food Chemistry, 2018, 66, 10179-10187.	2.4	24
95	Optimization and Scaleâ€Up Preparation of Egg White Hydrolysate with Angiotensin I Converting Enzyme Inhibitory Activity. Journal of Food Science, 2018, 83, 1762-1768.	1.5	8
96	Egg Protein-Derived Bioactive Peptides: Preparation, Efficacy, and Absorption. Advances in Food and Nutrition Research, 2018, 85, 1-58.	1.5	34
97	A spent hen muscle protein hydrolysate: a potential IL-10 stimulator in a murine model. Food and Function, 2018, 9, 4714-4719.	2.1	11
98	Egg and Soy-Derived Peptides and Hydrolysates: A Review of Their Physiological Actions against Diabetes and Obesity. Nutrients, 2018, 10, 549.	1.7	47
99	Purification and characterization of antioxidant peptides from cooked eggs using a dynamic in vitro gastrointestinal model in vascular smooth muscle A7r5 cells. Npj Science of Food, 2018, 2, 7.	2.5	28
100	Physicochemical and functional properties of leftover egg yolk granules after phosvitin extraction. Food Chemistry, 2018, 268, 369-377.	4.2	13
101	Identification and Characterization of Glycopeptides from Egg Protein Ovomucin with Anti-Agglutinating Activity against Porcine K88 Enterotoxigenic <i>Escherichia coli</i> Strains. Journal of Agricultural and Food Chemistry, 2017, 65, 777-783.	2.4	27
102	Milk-derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) differentially modulate angiotensin II effects on vascular smooth muscle cells. Journal of Functional Foods, 2017, 30, 151-158.	1.6	31
103	Physicochemical and functional properties of livetins fraction from hen egg yolk. Food Bioscience, 2017, 18, 38-45.	2.0	48
104	Soy protein-derived ACE-inhibitory peptide LSW (Leu-Ser-Trp) shows anti-inflammatory activity on vascular smooth muscle cells. Journal of Functional Foods, 2017, 34, 248-253.	1.6	49
105	Exfoliating nanomaterials in canola protein derived adhesive improves strength and water resistance. RSC Advances, 2017, 7, 6743-6752.	1.7	29
106	Transport of soybean protein-derived antihypertensive peptide LSW across Caco-2 monolayers. Journal of Functional Foods, 2017, 39, 96-102.	1.6	39
107	Interaction of cruciferin-based nanoparticles with Caco-2 cells and Caco-2/HT29-MTX co-cultures. Acta Biomaterialia, 2017, 64, 249-258.	4.1	53
108	Graphite Oxide Improves Adhesion and Water Resistance of Canola Protein–Graphite Oxide Hybrid Adhesive. Scientific Reports, 2017, 7, 11538.	1.6	46

#	Article	IF	CITATIONS
109	Anti-inflammatory effects of egg yolk livetins (α, β, and γ-livetin) fraction and its enzymatic hydrolysates in lipopolysaccharide-induced RAW 264.7 macrophages. Food Research International, 2017, 100, 449-459.	2.9	67
110	Removing Cross-Linked Telopeptides Enhances the Production of Low-Molecular-Weight Collagen Peptides from Spent Hens. Journal of Agricultural and Food Chemistry, 2017, 65, 7491-7499.	2.4	21
111	Transport Study of Egg-Derived Antihypertensive Peptides (LKP and IQW) Using Caco-2 and HT29 Coculture Monolayers. Journal of Agricultural and Food Chemistry, 2017, 65, 7406-7414.	2.4	66
112	Egg ovotransferrin derived IRW exerts protective effect against H 2 O 2 -induced oxidative stress in Caco-2 cells. Journal of Functional Foods, 2017, 39, 160-167.	1.6	21
113	Revisiting the mechanisms of ACE inhibitory peptides from food proteins. Trends in Food Science and Technology, 2017, 69, 214-219.	7.8	131
114	Egg white hydrolysate shows insulin mimetic and sensitizing effects in 3T3-F442A pre-adipocytes. PLoS ONE, 2017, 12, e0185653.	1.1	32
115	The potential of food proteinâ€derived antiâ€inflammatory peptides against various chronic inflammatory diseases. Journal of the Science of Food and Agriculture, 2016, 96, 2303-2311.	1.7	95
116	Bioactive peptides on endothelial function. Food Science and Human Wellness, 2016, 5, 1-7.	2.2	40
117	Egg white protein hydrolysate reduces blood pressure, improves vascular relaxation and modifies aortic angiotensin II receptors expression in spontaneously hypertensive rats. Journal of Functional Foods, 2016, 27, 667-673.	1.6	56
118	Effect of proteolysis on the sialic acid content and bifidogenic activity of ovomucin hydrolysates. Food Chemistry, 2016, 212, 78-86.	4.2	21
119	Modulatory Effects of Egg White Ovotransferrin-Derived Tripeptide IRW (Ile-Arg-Trp) on Vascular Smooth Muscle Cells against Angiotensin II Stimulation. Journal of Agricultural and Food Chemistry, 2016, 64, 7342-7347.	2.4	47
120	Bovine lactoferrin-derived ACE inhibitory tripeptide LRP also shows antioxidative and anti-inflammatory activities in endothelial cells. Journal of Functional Foods, 2016, 25, 375-384.	1.6	24
121	Low-molecular-weight fractions of Alcalase hydrolyzed egg ovomucin extract exert anti-inflammatory activity in human dermal fibroblasts through the inhibition of tumor necrosis factor–mediated nuclear factor κB pathway. Nutrition Research, 2016, 36, 648-657.	1.3	46
122	Cruciferin coating improves the stability of chitosan nanoparticles at low pH. Journal of Materials Chemistry B, 2016, 4, 4988-5001.	2.9	12
123	The potential of antioxidative and anti-inflammatory peptides in reducing the risk of cardiovascular diseases. Current Opinion in Food Science, 2016, 8, 25-32.	4.1	14
124	Antioxidant Peptides Identified from Ovotransferrin by the ORAC Method Did Not Show Anti-Inflammatory and Antioxidant Activities in Endothelial Cells. Journal of Agricultural and Food Chemistry, 2016, 64, 113-119.	2.4	44
125	Cruciferin nanoparticles: Preparation, characterization and their potential application in delivery of bioactive compounds. Food Hydrocolloids, 2016, 54, 107-118.	5.6	75
126	Effects of storage and cooking on the antioxidant capacity of laying hen eggs. Food Chemistry, 2016, 194, 111-116.	4.2	41

#	Article	IF	CITATIONS
127	Egg ovotransferrinâ€derived ACE inhibitory peptide IRW increases ACE2 but decreases proinflammatory genes expression in mesenteric artery of spontaneously hypertensive rats. Molecular Nutrition and Food Research, 2015, 59, 1735-1744.	1.5	65
128	Hen Egg as an Antioxidant Food Commodity: A Review. Nutrients, 2015, 7, 8274-8293.	1.7	137
129	Milk-Derived Tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) Promote Adipocyte Differentiation and Inhibit Inflammation in 3T3-F442A Cells. PLoS ONE, 2015, 10, e0117492.	1.1	74
130	Ameliorative effect of betulinic acid on oxidative damage and apoptosis in the splenocytes of dexamethasone treated mice. International Immunopharmacology, 2015, 27, 85-94.	1.7	21
131	Egg-derived ACE-inhibitory peptides IQW and LKP reduce blood pressure in spontaneously hypertensive rats. Journal of Functional Foods, 2015, 13, 50-60.	1.6	83
132	Thermalâ€eided phosvitin extraction from egg yolk. Journal of the Science of Food and Agriculture, 2015, 95, 2595-2600.	1.7	7
133	Molecular Targets of Antihypertensive Peptides: Understanding the Mechanisms of Action Based on the Pathophysiology of Hypertension. International Journal of Molecular Sciences, 2015, 16, 256-283.	1.8	120
134	Purification and characterization of antioxidant peptides from enzymatically hydrolyzed chicken egg white. Food Chemistry, 2015, 188, 467-472.	4.2	161
135	Bioaccessibility and Digestive Stability of Carotenoids in Cooked Eggs Studied Using a Dynamic in Vitro Gastrointestinal Model. Journal of Agricultural and Food Chemistry, 2015, 63, 2956-2962.	2.4	37
136	Structural and functional characterization of yellow field pea seed (Pisum sativum L.) protein-derived antihypertensive peptides. Food Research International, 2015, 77, 10-16.	2.9	46
137	Preparation and characterization of phosphopeptides from egg yolk phosvitin. Journal of Functional Foods, 2015, 18, 190-197.	1.6	14
138	Phase separation behavior of egg yolk suspensions after anionic polysaccharides addition. Carbohydrate Polymers, 2015, 117, 297-303.	5.1	12
139	Food-Derived Bioactive Peptides on Inflammation and Oxidative Stress. BioMed Research International, 2014, 2014, 1-11.	0.9	264
140	Physicochemical properties of leftover egg yolk after livetins removal. LWT - Food Science and Technology, 2014, 55, 170-175.	2.5	18
141	Preparation and characterization of canola protein isolate–poly(glycidyl methacrylate) conjugates: A bio-based adhesive. Industrial Crops and Products, 2014, 57, 124-131.	2.5	52
142	Conjugation of Ovotransferrin with Catechin Shows Improved Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2014, 62, 2581-2587.	2.4	120
143	Preparation of high purity egg phosvitin using anion exchange chromatography. Food Chemistry, 2014, 158, 186-191.	4.2	8
144	Purification, Identification, and <i>In Vivo</i> Activity of Angiotensin lâ€Converting Enzyme Inhibitory Peptide, from Ribbonfish (<i>Trichiurus haumela</i>) Backbone. Journal of Food Science, 2014, 79, C1-7.	1.5	21

#	Article	IF	CITATIONS
145	Beneficial Effects of Simulated Gastro-Intestinal Digests of Fried Egg and Its Fractions on Blood Pressure, Plasma Lipids and Oxidative Stress in Spontaneously Hypertensive Rats. PLoS ONE, 2014, 9, e115006.	1.1	33
146	Feather Fiberâ€Based Thermoplastics: Effects of Different Plasticizers on Material Properties. Macromolecular Materials and Engineering, 2013, 298, 153-162.	1.7	59
147	Egg Yolk Carotenoids: Composition, Analysis, and Effects of Processing on Their Stability. ACS Symposium Series, 2013, , 219-225.	0.5	5
148	Chemical, rheological and surface morphologic characterisation of spent hen proteins extracted by pH-shift processing with or without the presence of cryoprotectants. Food Chemistry, 2013, 139, 710-719.	4.2	38
149	Adhesive properties of modified triticale distillers grain proteins. International Journal of Adhesion and Adhesives, 2013, 44, 122-129.	1.4	18
150	Egg white ovomucin gels: structured fluids with weak polyelectrolyte properties. RSC Advances, 2013, 3, 910-917.	1.7	25
151	Structure and Activity Study of Egg Protein Ovotransferrin Derived Peptides (IRW and IQW) on Endothelial Inflammatory Response and Oxidative Stress. Journal of Agricultural and Food Chemistry, 2013, 61, 2120-2129.	2.4	139
152	Fried egg digest decreases blood pressure in spontaneous hypertensive rats. Journal of Functional Foods, 2013, 5, 187-194.	1.6	14
153	Bioactive Natural Constituents from Food Sources—Potential Use in Hypertension Prevention and Treatment. Critical Reviews in Food Science and Nutrition, 2013, 53, 615-630.	5.4	127
154	LC–MS/MS coupled with QSAR modeling in characterising of angiotensin l-converting enzyme inhibitory peptides from soybean proteins. Food Chemistry, 2013, 141, 2682-2690.	4.2	107
155	Transport of IRW, an Ovotransferrin-Derived Antihypertensive Peptide, in Human Intestinal Epithelial Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2013, 61, 1487-1492.	2.4	55
156	Egg-Derived Tri-Peptide IRW Exerts Antihypertensive Effects in Spontaneously Hypertensive Rats. PLoS ONE, 2013, 8, e82829.	1.1	123
157	Antioxidative and functional properties of protein hydrolysate from defatted skipjack (Katsuwonous) Tj ETQq1 1	0.784314 4.2	rgBT /Over
158	Effects of addition of egg ovotransferrin-derived peptides on the oxygen radical absorbance capacity of different teas. Food Chemistry, 2012, 135, 1600-1607.	4.2	26
159	Effect of high pressure treatment on ovotransferrin. Food Chemistry, 2012, 135, 2245-2252.	4.2	45
160	Ovotransferrin: Structure, bioactivities, and preparation. Food Research International, 2012, 46, 480-487.	2.9	113
161	Effect of Shell Eggs Storage on Ovomucin Extraction. Food and Bioprocess Technology, 2012, 5, 2280-2284.	2.6	12
162	Preparation and characterization of adhesive from spent hen proteins. International Journal of Adhesion and Adhesives, 2012, 36, 8-14.	1.4	31

#	Article	IF	CITATIONS
163	Bioplastics from Feather Quill. Biomacromolecules, 2011, 12, 3826-3832.	2.6	107
164	QSAR-aided in silico approach in evaluation of food proteins as precursors of ACE inhibitory peptides. Food Research International, 2011, 44, 2465-2474.	2.9	113
165	Angiotensinâ€I Converting Enzyme Inhibitory and Antioxidant Activities of Egg Protein Hydrolysates Produced with Gastrointestinal and Nongastrointestinal Enzymes. Journal of Food Science, 2011, 76, C801-7.	1.5	53
166	Proteomic analysis of egg white proteins during storage. Proteomics, 2011, 11, 144-153.	1.3	76
167	Effect of sonication on thermolysin hydrolysis of ovotransferrin. Food Chemistry, 2011, 124, 808-815.	4.2	42
168	Free aromatic amino acids in egg yolk show antioxidant properties. Food Chemistry, 2011, 129, 155-161.	4.2	112
169	Purification and characterisation of angiotensin I converting enzyme (ACE) inhibitory peptides derived from enzymatic hydrolysate of ovotransferrin. Food Chemistry, 2011, 126, 1614-1619.	4.2	89
170	Protein Extraction from Triticale Distillers Grains. Cereal Chemistry, 2011, 88, 553-559.	1.1	16
171	Oxygen radical absorbance capacity of peptides from egg white protein ovotransferrin and their interaction with phytochemicals. Food Chemistry, 2010, 123, 635-641.	4.2	123
172	Hempseed protein derived antioxidative peptides: Purification, identification and protection from hydrogen peroxide-induced apoptosis in PC12 cells. Food Chemistry, 2010, 123, 1210-1218.	4.2	109
173	Egg-Derived Peptide IRW Inhibits TNF-α-Induced Inflammatory Response and Oxidative Stress in Endothelial Cells. Journal of Agricultural and Food Chemistry, 2010, 58, 10840-10846.	2.4	95
174	Identification of Novel Antioxidative Peptides Derived from a Thermolytic Hydrolysate of Ovotransferrin by LC-MS/MS. Journal of Agricultural and Food Chemistry, 2010, 58, 7664-7672.	2.4	98
175	A new approach for identification of novel antihypertensive peptides from egg proteins by QSAR and bioinformatics. Food Research International, 2010, 43, 1371-1378.	2.9	139
176	Ovomucin – a glycoprotein with promising potential. Trends in Food Science and Technology, 2010, 21, 455-463.	7.8	91
177	Production of angiotensin I-converting enzyme inhibitory peptides from defatted canola meal. Bioresource Technology, 2009, 100, 5283-5287.	4.8	58
178	Angiotensin I Converting Enzyme Inhibitory Peptides from Simulated <i>in Vitro</i> Gastrointestinal Digestion of Cooked Eggs. Journal of Agricultural and Food Chemistry, 2009, 57, 471-477.	2.4	99
179	A New Method of Separating Ovomucin from Egg White. Journal of Agricultural and Food Chemistry, 2009, 57, 3596-3603.	2.4	54
180	Purification of angiotensin I-converting enzyme-inhibitory peptides from the enzymatic hydrolysate of defatted canola meal. Food Chemistry, 2008, 111, 942-950.	4.2	69

Jianping Wu

#	Article	IF	CITATIONS
181	lsoflavone Content and Its Potential Contribution to the Antihypertensive Activity in Soybean Angiotensin I Converting Enzyme Inhibitory Peptides. Journal of Agricultural and Food Chemistry, 2008, 56, 9899-9904.	2.4	27
182	Influence of Thiol Metabolism of Lactobacilli on Egg White Proteins in Wheat Sourdoughs. Journal of Agricultural and Food Chemistry, 2008, 56, 3357-3362.	2.4	22
183	Structural Requirements of Angiotensin I-Converting Enzyme Inhibitory Peptides:  Quantitative Structureâ^Activity Relationship Study of Di- and Tripeptides. Journal of Agricultural and Food Chemistry, 2006, 54, 732-738.	2.4	456
184	Structural Requirements of Angiotensin I-Converting Enzyme Inhibitory Peptides: Quantitative Structure-Activity Relationship Modeling of Peptides Containing 4-10 Amino Acid Residues. QSAR and Combinatorial Science, 2006, 25, 873-880.	1.5	145
185	Restriction of thein VitroFormation of Angiotensin II by Leucinyl-Arginyl-Tryptophan, a Novel Peptide with Potent Angiotensin I-Converting Enzyme Inhibitory Activity. Bioscience, Biotechnology and Biochemistry, 2006, 70, 1277-1280.	0.6	10
186	Improved method for direct high-performance liquid chromatography assay of angiotensin-converting enzyme-catalyzed reactions. Journal of Chromatography A, 2002, 950, 125-130.	1.8	145
187	Hypotensive and Physiological Effect of Angiotensin Converting Enzyme Inhibitory Peptides Derived from Soy Protein on Spontaneously Hypertensive Rats. Journal of Agricultural and Food Chemistry, 2001, 49, 501-506.	2.4	213
188	Spent Hen-derived Angiotensin-converting Enzyme 2 (ACE2) Upregulating Peptide Reduces Blood Pressure in Spontaneously Hypertensive Rats. , 0, , .		1
189	Spent Hen Muscle Protein Hydrolysate Reduces Blood Pressure in Spontaneously Hypertensive Rats. , 0,		1