Chandra Shekhar Prajapati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8413715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alcohol-sensing characteristics of spray deposited ZnO nano-particle thin films. Sensors and Actuators B: Chemical, 2011, 160, 1043-1049.	7.8	91
2	Single Chip Gas Sensor Array for Air Quality Monitoring. Journal of Microelectromechanical Systems, 2017, 26, 433-439.	2.5	61
3	Influence of In doping on the structural, optical and acetone sensing properties of ZnO nanoparticulate thin films. Materials Science in Semiconductor Processing, 2013, 16, 200-210.	4.0	55
4	Effect of Al dopants on the structural, optical and gas sensing properties of spray-deposited ZnO thin films. Materials Chemistry and Physics, 2013, 142, 276-285.	4.0	40
5	ppb level detection of NO ₂ using a WO ₃ thin film-based sensor: material optimization, device fabrication and packaging. RSC Advances, 2018, 8, 6590-6599.	3.6	40
6	Influence of Fe doping on the structural, optical and acetone sensing properties of sprayed ZnO thin films. Materials Research Bulletin, 2013, 48, 2687-2695.	5.2	39
7	Sensing of LPG with nanostructured zinc oxide thin films grown by spray pyrolysis technique. Physica B: Condensed Matter, 2011, 406, 2684-2688.	2.7	35
8	Effect of precursors on structure, optical and electrical properties of chemically deposited nanocrystalline ZnO thin films. Applied Surface Science, 2012, 258, 2823-2828.	6.1	31
9	Optoelectronics and formaldehyde sensing properties of tin-doped ZnO thin films. Applied Physics A: Materials Science and Processing, 2013, 113, 651-662.	2.3	31
10	Growth, structure and optical characterization of Alâ€doped ZnO nanoparticle thin films. Crystal Research and Technology, 2011, 46, 1086-1092.	1.3	28
11	Experimental Investigation of Spray-Deposited Fe-Doped ZnO Nanoparticle Thin Films: Structural, Microstructural, and Optical Properties. Journal of Thermal Spray Technology, 2013, 22, 1230-1241.	3.1	28
12	Honeycomb type ZnO nanostructures for sensitive and selective CO detection. Sensors and Actuators B: Chemical, 2017, 252, 764-772.	7.8	24
13	Modification in the microstructural and electrochromic properties of spray-pyrolysed WO3 thin films upon Mo doping. Journal of Sol-Gel Science and Technology, 2019, 90, 281-295.	2.4	21
14	Self-heating oxidized suspended Pt nanowire for high performance hydrogen sensor. Sensors and Actuators B: Chemical, 2018, 260, 236-242.	7.8	20
15	Tin-Incorporation Induced Changes in the Microstructural, Optical, and Electrical Behavior of Tungsten Oxide Nanocrystalline Thin Films Grown Via Spray Pyrolysis. Journal of Thermal Spray Technology, 2014, 23, 1445-1455.	3.1	19
16	An ultralow power nanosensor array for selective detection of air pollutants. Nanotechnology, 2020, 31, 025301.	2.6	13
17	Tailoring the Microstructural, Optical, and Electrical Properties of Nanocrystalline WO3 Thin Films Using Al Doping. Journal of Materials Engineering and Performance, 2014, 23, 3141-3151.	2.5	12
18	Supercapacitive performance of electrochemically synthesized nanocrystalline MnO2 films using different plating solutions: A comparative study. Journal of Alloys and Compounds, 2018, 749, 172-179.	5.5	10

#	Article	IF	CITATIONS
19	Highly Sensitive CO Sensor Based on Thickness‣elective ZnO Thin Film: Device Fabrication and Packaging. Crystal Research and Technology, 2019, 54, 1800241.	1.3	7
20	Reduction of Humidity Effect in WO ₃ Thin Filmâ€Based NO ₂ Sensor Using Physiochemical Optimization. Crystal Research and Technology, 2021, 56, .	1.3	6
21	A baseline correction model for humidity and temperature compensation<subitle>WO ₃ film based sensor for NO ₂ detection. , 2019, ,		4
22	Effect of Film Thickness on H2S Sensing Characteristics of WO3-x Films. ECS Meeting Abstracts, 2020, MA2020-01, 2166-2166.	0.0	0
23	Chemiresistors and Their Microfabrication. Materials Horizons, 2020, , 71-94.	0.6	0