Akira Terao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8413656/publications.pdf

Version: 2024-02-01

279798 330143 1,990 40 23 37 h-index citations g-index papers 40 40 40 2373 times ranked citing authors all docs docs citations

#	Article	IF	CITATIONS
1	Behavioral characteristics of dopamine D5 receptor knockout mice. Scientific Reports, 2022, 12, 6014.	3.3	2
2	Melaninâ€concentrating hormoneâ€producing neurons in the hypothalamus regulate brown adipose tissue and thus contribute to energy expenditure. Journal of Physiology, 2021, , .	2.9	10
3	REM sleep–active MCH neurons are involved in forgetting hippocampus-dependent memories. Science, 2019, 365, 1308-1313.	12.6	138
4	Royal jelly ameliorates diet-induced obesity and glucose intolerance by promoting brown adipose tissue thermogenesis in mice. Obesity Research and Clinical Practice, 2018, 12, 127-137.	1.8	26
5	Melinjo (Gnetum gnemon L.) seed extract induces uncoupling protein 1 expression in brown fat and protects mice against diet-induced obesity, inflammation, and insulin resistance. Nutrition Research, 2018, 58, 17-25.	2.9	11
6	Retinoic acid modulates lipid accumulation glucose concentration dependently through inverse regulation of <scp>SREBP</scp> â€1 expression in 3T3L1 adipocytes. Genes To Cells, 2017, 22, 568-582.	1.2	10
7	Progesterone dose-dependently modulates hepatocyte growth factor production in 3T3-L1 mouse preadipocytes. Endocrine Journal, 2017, 64, 777-785.	1.6	1
8	Progressive Loss of the Orexin Neurons Reveals Dual Effects on Wakefulness. Sleep, 2016, 39, 369-377.	1.1	39
9	Optogenetic Manipulation of Activity and Temporally Controlled Cell-Specific Ablation Reveal a Role for MCH Neurons in Sleep/Wake Regulation. Journal of Neuroscience, 2014, 34, 6896-6909.	3.6	187
10	Hypothalamic prepro-orexin mRNA level is inversely correlated to the non-rapid eye movement sleep level in high-fat diet-induced obese mice. Obesity Research and Clinical Practice, 2013, 7, e251-e257.	1.8	10
11	Thermogenic Ability of Uncoupling Protein 1 in Beige Adipocytes in Mice. PLoS ONE, 2013, 8, e84229.	2.5	67
12	Proinsulin C-peptide activates α-enolase: implications for C-peptideâ€"cell membrane interaction. Journal of Biochemistry, 2012, 152, 53-62.	1.7	15
13	Neuropeptide Y activates phosphorylation of ERK and STAT3 in stromal vascular cells from brown adipose tissue, but fails to affect thermogenic function of brown adipocytes. Peptides, 2012, 34, 336-342.	2.4	12
14	Possible involvement of uncoupling protein 1 in appetite control by leptin. Experimental Biology and Medicine, 2011, 236, 1274-1281.	2.4	25
15	Retinol binding protein 4 in dairy cows: its presence in colostrum and alteration in plasma during fasting, inflammation, and the peripartum period. Journal of Dairy Research, 2010, 77, 27-32.	1.4	17
16	Dietâ€induced obesity disrupts ductal development in the mammary glands of nonpregnant mice. Developmental Dynamics, 2009, 238, 1092-1099.	1.8	48
17	Gene expression in the rat brain during prostaglandin D ₂ and adenosinergicallyâ€induced sleep. Journal of Neurochemistry, 2008, 105, 1480-1498.	3.9	8
18	Geldanamycin enhances hepatocyte growth factor stimulation of eNOS phosphorylation in endothelial cells. European Journal of Pharmacology, 2008, 582, 110-115.	3. 5	4

#	Article	IF	Citations
19	Roles of the hypocretin/orexins in the regulation of sleep and wakefulness. Japanese Journal of Veterinary Research, 2008, 55, 75-83.	0.7	0
20	Gene expression in the rat brain during sleep deprivation and recovery sleep: an Affymetrix GeneChip $^{\otimes}$ study. Neuroscience, 2006, 137, 593-605.	2.3	128
21	Sleep and aging: molecular approaches within a systems neurobiology context. Advances in Cell Aging and Gerontology, 2005, 17, 165-191.	0.1	0
22	Age-related changes in histamine receptor mRNA levels in the mouse brain. Neuroscience Letters, 2004, 355, 81-84.	2.1	35
23	Differential increase in the expression of heat shock protein family members during sleep deprivation and during sleep. Neuroscience, 2003, 116, 187-200.	2.3	137
24	Region-specific changes in immediate early gene expression in response to sleep deprivation and recovery sleep in the mouse brain. Neuroscience, 2003, 120, 1115-1124.	2.3	80
25	Transcriptional regulation of the mouse fatty acid amide hydrolase gene. Gene, 2002, 291, 203-210.	2.2	96
26	Age-related decline in hypocretin (orexin) receptor 2 messenger RNA levels in the mouse brain. Neuroscience Letters, 2002, 332, 190-194.	2.1	71
27	Attenuated fever in pregnant rats is associated with blunted syntheses of brain cyclooxygenase-2 and PGE2. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R1346-R1353.	1.8	25
28	A role for cryptochromes in sleep regulation. BMC Neuroscience, 2002, 3, 20.	1.9	265
29	Immune response gene expression increases in the aging murine hippocampus. Journal of Neuroimmunology, 2002, 132, 99-112.	2.3	102
30	Modulation of the promoter region of prepro-hypocretin by α-interferon. Gene, 2001, 262, 123-128.	2.2	25
31	Prepro-hypocretin (Prepro-Orexin) Expression is Unaffected by Short-Term Sleep Deprivation in Rats and Mice. Sleep, 2000, 23, 1-8.	1.1	39
32	Cyclooxygenase in the vagal afferents: is it involved in the brain prostaglandin response evoked by lipopolysaccharide?. Autonomic Neuroscience: Basic and Clinical, 2000, 85, 88-92.	2.8	21
33	Central IL-1 differentially regulates peripheral IL-6 and TNF synthesis. Cellular and Molecular Life Sciences, 1998, 54, 282-287.	5.4	19
34	Enhancement of slow-wave sleep by tumor necrosis factor- \hat{l}_{\pm} is mediated by cyclooxygenase-2 in rats. NeuroReport, 1998, 9, 3791-3796.	1.2	52
35	Interleukin-1 Induces Slow-Wave Sleep at the Prostaglandin D2-Sensitive Sleep-Promoting Zone in the Rat Brain. Journal of Neuroscience, 1998, 18, 6599-6607.	3.6	73
36	CSF levels of prostaglandins, especially the level of prostaglandin D2, are correlated with increasing propensity towards sleep in rats. Brain Research, 1997, 751, 81-89.	2.2	101

Akira Terao

#	Article	IF	CITATION
37	Plasma haptoglobin response to intracerebroventricular administration of cytokines in rats . Biomedical Research, 1995, 16, 353-356.	0.9	3
38	Roles of Prostaglandins D ₂ and E ₂ in Interleukinâ€1â€Induced Activation of Norepinephrine Turnover in the Brain and Peripheral Organs of Rats. Journal of Neurochemistry, 1995, 65, 2742-2747.	3.9	31
39	Cytokine-induced change in hypothalamic norepinephrine turnover: involvement of corticotropin-releasing hormone and prostaglandins. Brain Research, 1993, 622, 257-261.	2.2	55
40	Possible role of IL-6 in IL-1-induced plasma iron and corticosterone responses in rats .Biomedical Research, 1993, 14, 301-303.	0.9	2