
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8413362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of 5-HT1A receptors in learning and memory. Behavioural Brain Research, 2008, 195, 54-77.	2.2	271
2	The selective dopamine D2 receptor antagonist raclopride discriminates between dopamine-mediated motor functions. Psychopharmacology, 1986, 90, 287-94.	3.1	204
3	Asphyctic lesion: proliferation of tyrosine hydroxylase-immunoreactive nerve cell bodies in the rat substantia nigra and functional changes in dopamine neurotransmission. Brain Research, 1991, 543, 1-9.	2.2	181
4	Time-dependent involvement of the dorsal hippocampus in trace fear conditioning in mice. Hippocampus, 2005, 15, 418-426.	1.9	162
5	Adenosine A2A Agonists: A Potential New Type of Atypical Antipsychotic. Neuropsychopharmacology, 1997, 17, 82-91.	5.4	149
6	Dopamine D1Receptor-mediated Facilitation of GABAergic Neurotransmission in the Rat Strioentopeduncular Pathway and its Modulation by Adenosine A1Receptor-mediated Mechanisms. European Journal of Neuroscience, 1996, 8, 1545-1553.	2.6	134
7	Adenosine/dopamine interaction: implications for the treatment of Parkinson's disease. Parkinsonism and Related Disorders, 2001, 7, 235-241.	2.2	118
8	Prenatal Immune Activation Interacts with Genetic <i>Nurr1</i> Deficiency in the Development of Attentional Impairments. Journal of Neuroscience, 2012, 32, 436-451.	3.6	115
9	Learning from the past and looking to the future: Emerging perspectives for improving the treatment of psychiatric disorders. European Neuropsychopharmacology, 2015, 25, 599-656.	0.7	113
10	Decreased 5-HT transporter mRNA in neurons of the dorsal raphe nucleus and behavioral depression in the obese leptin-deficient ob/ob mouse. Molecular Brain Research, 2000, 81, 51-61.	2.3	112
11	The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Frontiers in Pharmacology, 2015, 6, 162.	3.5	110
12	Phencyclidine- and Dizocilpine-Induced Hyperlocomotion Are Differentially Mediated. Neuropsychopharmacology, 1994, 11, 167-177.	5.4	104
13	Involvement of the 5-HT1AReceptors in Classical Fear Conditioning in C57BL/6J Mice. Journal of Neuroscience, 2000, 20, 8515-8527.	3.6	95
14	Differential Role of Galanin Receptors in the Regulation of Depression-Like Behavior and Monoamine/Stress-Related Genes at the Cell Body Level. Neuropsychopharmacology, 2008, 33, 2573-2585.	5.4	94
15	Inhibitors of neuronal monoamine uptake. 2. Selective inhibition of 5-hydroxytryptamine uptake by .alphaamino acid esters of phenethyl alcohols. Journal of Medicinal Chemistry, 1978, 21, 448-456.	6.4	93
16	Selective 5-HT1A Antagonists WAY 100635 and NAD-299 Attenuate the Impairment of Passive Avoidance Caused by Scopolamine in the Rat. Neuropsychopharmacology, 2003, 28, 253-264.	5.4	91
17	5-Hydroxytryptamine 1A Receptor Blockade Facilitates Aversive Learning in Mice: Interactions with Cholinergic and Clutamatergic Mechanisms. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 581-591.	2.5	91
18	Neuropeptide and Small Transmitter Coexistence: Fundamental Studies and Relevance to Mental Illness. Frontiers in Neural Circuits, 2018, 12, 106.	2.8	87

Sven Ove Ögren

#	Article	IF	CITATIONS
19	Analysis of the role of 5-HT1A receptors in spatial and aversive learning in the rat. Neuropharmacology, 2005, 48, 830-852.	4.1	85
20	A Behavioral Analysis of the Spatial Learning Deficit Induced by the NMDA Receptor Antagonist MK-801 (Dizocilpine) in the Rat. Neuropsychopharmacology, 1999, 21, 414-426.	5.4	84
21	Impeded Interaction between Schwann Cells and Axons in the Absence of Laminin Â4. Journal of Neuroscience, 2005, 25, 3692-3700.	3.6	84
22	Galanin Is a Potent In Vivo Modulator of Mesencephalic Serotonergic Neurotransmission. Neuropsychopharmacology, 2002, 27, 341-356.	5.4	80
23	Differential involvement of the dorsal hippocampus in passive avoidance in C57bl/6J and DBA/2J mice. Hippocampus, 2008, 18, 11-19.	1.9	78
24	Differential effects of selective adenosine A1 and A2A receptor agonists on dopamine receptor agonist-induced behavioural responses in rats. European Journal of Pharmacology, 1998, 347, 153-158.	3.5	77
25	Nogo receptor 1 regulates formation of lasting memories. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20476-20481.	7.1	76
26	EGb761 protects against nigrostriatal dopaminergic neurotoxicity in 1â€methylâ€4â€phenylâ€1,2,3,6â€tetrahydropyridineâ€induced Parkinsonism in mice: role of oxidative stress. European Journal of Neuroscience, 2008, 28, 41-50.	2.6	73
27	An Ancient Duplication of Exon 5 in the Snap25 Gene Is Required for Complex Neuronal Development/Function. PLoS Genetics, 2008, 4, e1000278.	3.5	72
28	Neuropeptides in learning and memory processes with focus on galanin. European Journal of Pharmacology, 2010, 626, 9-17.	3.5	70
29	D1- and D2-receptor antagonist induce catalepsy via different efferent. Striatal pathways. Neuroscience Letters, 1988, 85, 333-338.	2.1	68
30	Role of serotonin in memory: facilitation by alaproclate and zimeldine. Psychopharmacology, 1984, 84, 496-502.	3.1	60
31	Effects of prenatal exposure to methylmercury on dopamine-mediated locomotor activity and dopamine D2 receptor binding. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 367, 500-508.	3.0	60
32	Big Dynorphin, a Prodynorphin-Derived Peptide Produces NMDA Receptor-Mediated Effects on Memory, Anxiolytic-Like and Locomotor Behavior in Mice. Neuropsychopharmacology, 2006, 31, 1928-1937.	5.4	59
33	5-HT7 receptor stimulation by 8-OH-DPAT counteracts the impairing effect of 5-HT1A receptor stimulation on contextual learning in mice. European Journal of Pharmacology, 2008, 596, 107-110.	3.5	59
34	Galanin Receptor Antagonists. CNS Drugs, 2006, 20, 633-654.	5.9	57
35	Enhanced hippocampal noradrenaline and serotonin release in galanin-overexpressing mice after repeated forced swimming test. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 354-359.	7.1	54
36	Chemical identity of 5-HT2A receptor immunoreactive neurons of the rat septal complex and dorsal hippocampus. Brain Research, 2004, 1010, 156-165.	2.2	53

#	Article	IF	CITATIONS
37	Disruption of EphA/ephrin-A signaling in the nigrostriatal system reduces dopaminergic innervation and dissociates behavioral responses to amphetamine and cocaine. Molecular and Cellular Neurosciences, 2004, 26, 418-428.	2.2	53
38	Galanin attenuates basal and antidepressant drug-induced increase of extracellular serotonin and noradrenaline levels in the rat hippocampus. Neuroscience Letters, 2003, 339, 239-242.	2.1	52
39	Galanin enhances and a galanin antagonist attenuates depression-like behaviour in the rat. European Neuropsychopharmacology, 2007, 17, 64-69.	0.7	52
40	Neural Stem Cell Transplant-Induced Effect on Neurogenesis and Cognition in Alzheimer Tg2576 Mice Is Inhibited by Concomitant Treatment with Amyloid-Lowering or Cholinergic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mit mathvariant="bold-italic">î±</mml:mit </mml:mrow>7 Nicotinic Receptor Drugs. Neural Plasticity, 2015, 2015, 1-13.</mml:math 	2.2	51
41	Galanin, Galanin Receptor Subtypes and Depression-Like Behaviour. Exs, 2010, 102, 163-181.	1.4	51
42	Hypericum perforatum L (St John's wort) preferentially increases extracellular dopamine levels in the rat prefrontal cortex. British Journal of Pharmacology, 2004, 142, 414-418.	5.4	50
43	Effects of typical and atypical antipsychotic drugs on two-way active avoidance. Relationship to DA receptor blocking profile. Psychopharmacology, 1994, 114, 383-391.	3.1	49
44	Analysis of the 5-HT1A receptor involvement in passive avoidance in the rat. British Journal of Pharmacology, 1998, 125, 499-509.	5.4	49
45	5-HT1A and 5-HT7 receptor crosstalk in the regulation of emotional memory: Implications for effects of selective serotonin reuptake inhibitors. Neuropharmacology, 2012, 63, 1150-1160.	4.1	48
46	The effects of p-chloroamphetamine, a depletor of brain serotonin, on the performance of rats in two types of positively reinforced complex spatial discrimination tasks. Behavioral and Neural Biology, 1989, 52, 131-144.	2.2	46
47	Evidence in locomotion test for the functional heterogeneity of ORL-1 receptors. British Journal of Pharmacology, 2004, 141, 132-140.	5.4	45
48	Behavioural characterisation of young adult transgenic mice overexpressing galanin under the PDGF-B promoter. Regulatory Peptides, 2005, 125, 67-78.	1.9	44
49	Differential effects of the putative galanin receptor antagonists M15 and M35 on striatal acetylcholine release. European Journal of Pharmacology, 1993, 242, 59-64.	3.5	43
50	Intraventricular galanin modulates a 5-HT1A receptor-mediated behavioural response in the rat. European Journal of Neuroscience, 1998, 10, 1230-1240.	2.6	43
51	Simultaneous determination of acetylcholine, choline and physostigmine in microdialysis samples from rat hippocampus by microbore liquid chromatography/electrochemistry on peroxidase redox polymer coated electrodes. Journal of Neuroscience Methods, 1998, 83, 143-150.	2.5	43
52	Behavioral and autonomic dynamics during contextual fear conditioning in mice. Autonomic Neuroscience: Basic and Clinical, 2004, 115, 15-27.	2.8	41
53	Galanin and spatial learning in the rat. Evidence for a differential role for galanin in subregions of the hippocampal formation. Neuropharmacology, 2000, 39, 1386-1403.	4.1	39
54	Assessing aversive emotional states through the heart in mice: Implications for cardiovascular dysregulation in affective disorders. Neuroscience and Biobehavioral Reviews, 2009, 33, 181-190.	6.1	39

Sven Ove Ögren

#	Article	IF	CITATIONS
55	Galanin and learning. Brain Research, 1999, 848, 174-182.	2.2	38
56	The fast-off hypothesis revisited: A functional kinetic study of antipsychotic antagonism of the dopamine D2 receptor. European Neuropsychopharmacology, 2016, 26, 467-476.	0.7	38
57	Behavioural characterisation of transgenic mice overexpressing galanin under the PDGF-B promoter. Neuropeptides, 2005, 39, 299-304.	2.2	37
58	Central NPY receptor-mediated alteration of heart rate dynamics in mice during expression of fear conditioned to an auditory cue. Regulatory Peptides, 2004, 120, 205-214.	1.9	36
59	5â€HT _{1A} and NMDA receptors interact in the rat medial septum and modulate hippocampalâ€dependent spatial learning. Hippocampus, 2009, 19, 1187-1198.	1.9	36
60	Intraventricular galanin produces a timedependent modulation of 5-HT1A receptors in the dorsal raphe of the rat. NeuroReport, 2000, 11, 3943-3948.	1.2	35
61	Ethanol and acetaldehyde exposure induces specific epigenetic modifications in the prodynorphin gene promoter in a human neuroblastoma cell line. FASEB Journal, 2011, 25, 1069-1075.	0.5	35
62	Effect of N-methyl-d-aspartate on motor activity and in vivo adenosine striatal outflow in the rat. European Journal of Pharmacology, 1999, 385, 15-19.	3.5	34
63	Dissociation of Temporal Dynamics of Heart Rate and Blood Pressure Responses Elicited by Conditioned Fear but Not Acoustic Startle Behavioral Neuroscience, 2005, 119, 55-65.	1.2	34
64	Corticotropin-Releasing Factor Receptor 1 and Central Heart Rate Regulation in Mice during Expression of Conditioned Fear. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 905-916.	2.5	34
65	The effects of methylmercury on motor activity are sex- and age-dependent, and modulated by genetic deletion of adenosine receptors and caffeine administration. Toxicology, 2007, 241, 119-133.	4.2	34
66	Galanin stimulates acetylcholine release in the rat striatum. Neuroscience Letters, 1991, 128, 253-256.	2.1	33
67	Prolonged effects of intraventricular galanin on a 5-hydroxytryptamine1A receptor mediated function in the rat. Neuroscience Letters, 2001, 299, 145-149.	2.1	33
68	Reduced ethanol response in the alcohol-preferring RHA rats and neuropeptide mRNAs in relevant structures. European Journal of Neuroscience, 2006, 23, 531-540.	2.6	33
69	Chronic haloperidol treatment leads to an increase in the intramembrane interaction between adenosine A2 and dopamine D2 receptors in the neostriatum. Psychopharmacology, 1994, 116, 279-284.	3.1	32
70	Distribution of galanin and galanin transcript in the brain of a galanin-overexpressing transgenic mouse. Journal of Chemical Neuroanatomy, 2004, 28, 185-216.	2.1	31
71	Blockade of 5-HT1B receptors facilitates contextual aversive learning in mice by disinhibition of cholinergic and glutamatergic neurotransmission. Neuropharmacology, 2008, 54, 1041-1050.	4.1	31
72	Rapid increase of <i>Nurr1</i> mRNA expression in limbic and cortical brain structures related to coping with depressionâ€ike behavior in mice. Journal of Neuroscience Research, 2010, 88, 2284-2293.	2.9	31

#	Article	IF	CITATIONS
73	Activation of the brain 5-HT2C receptors causes hypolocomotion without anxiogenic-like cardiovascular adjustments in mice. Neuropharmacology, 2007, 52, 949-957.	4.1	30
74	"Atypical―neuromodulatory profile of glutapyrone, a representative of a novel `class' of amino acid-containing dipeptide-mimicking 1,4-dihydropyridine (DHP) compounds: in vitro and in vivo studies. European Neuropsychopharmacology, 1998, 8, 329-347.	0.7	29
75	Repeated low dose of phencyclidine administration impairs spatial learning in mice: Blockade by clozapine but not by haloperidol. European Neuropsychopharmacology, 2008, 18, 486-497.	0.7	29
76	The nociceptin system and hippocampal cognition in mice A pharmacological and genetic analysis. Brain Research, 2009, 1305, S7-S19.	2.2	29
77	Neonatal infection with neurotropic influenza A virus affects working memory and expression of type III Nrg1 in adult mice. Brain, Behavior, and Immunity, 2009, 23, 733-741.	4.1	29
78	Replacing SNAP-25b with SNAP-25a expression results in metabolic disease. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4326-35.	7.1	29
79	Galanin-evoked acetylcholine release in the rat striatum is blocked by the putative galanin antagonist M15. Brain Research, 1992, 574, 317-319.	2.2	28
80	Some Aspects on the Anatomy and Function of Central Cholecystokinin Systems. Basic and Clinical Pharmacology and Toxicology, 2002, 91, 382-386.	0.0	28
81	Effects of repeated treatment of phencyclidine on cognition and gene expression in C57BL/6 mice. International Journal of Neuropsychopharmacology, 2009, 12, 243.	2.1	28
82	GABAA receptor activation in the CA1 area of the dorsal hippocampus impairs consolidation of conditioned contextual fear in C57BL/6J mice. Behavioural Brain Research, 2013, 238, 160-169.	2.2	28
83	Central noradrenaline depletion attenuates amphetamine-induced locomotor behavior. Neuroscience Letters, 1986, 64, 139-144.	2.1	27
84	Analysis of the Role of the 5-HT1B Receptor in Spatial and Aversive Learning in the Rat. Neuropsychopharmacology, 2003, 28, 1642-1655.	5.4	27
85	The neuropeptide galanin as an in vivo modulator of brain 5-HT1A receptors: Possible relevance for affective disorders. Physiology and Behavior, 2007, 92, 172-179.	2.1	26
86	Evaluation of exploration and risk assessment in pre-weaning mice using the novel cage test. Physiology and Behavior, 2008, 93, 139-147.	2.1	26
87	Decreased ethanol preference and wheel running in Nurr1-deficient mice. European Journal of Neuroscience, 2003, 17, 2418-2424.	2.6	25
88	Bidirectional modulation of classical fear conditioning in mice by 5-HT1A receptor ligands with contrasting intrinsic activities. Neuropharmacology, 2009, 57, 567-576.	4.1	24
89	The Behavioural Pharmacology of Typical and Atypical Antipsychotic Drugs. Handbook of Experimental Pharmacology, 1996, , 225-266.	1.8	24
90	Galanin stimulates striatal acetylcholine release via a mechanism unrelated to cholinergic receptor stimulation. Regulatory Peptides, 1993, 45, 353-362.	1.9	23

#	Article	IF	CITATIONS
91	Dopamine D1and D2Receptor-Mediated Acute and Long-Lasting Behavioral Effects of Glial Cell Line-Derived Neurotrophic Factor Administered into the Striatum. Experimental Neurology, 1998, 154, 302-314.	4.1	22
92	Gene expression changes in brains of mice exposed to a maternal virus infection. NeuroReport, 2005, 16, 1111-1115.	1.2	22
93	Serotonin receptor involvement in the avoidance learning deficit caused by <i>p</i> â€chloroamphetamineâ€induced serotonin release. Acta Physiologica Scandinavica, 1986, 126, 449-462.	2.2	21
94	Modification of inherent and drug-induced dopaminergic activity after exposure to benzo(α)pyrene. NeuroToxicology, 2007, 28, 860-867.	3.0	20
95	60 years of advances in neuropsychopharmacology for improving brain health, renewed hope for progress. European Neuropsychopharmacology, 2015, 25, 591-598.	0.7	20
96	Potential antipsychotic agents. Part 8. Antidopaminergic properties of a potent series of 5-substituted (â^')-(S)-N-[(1-ethylpyrrolidin-2-yl)methyl]-2,3-dimethoxybcnzaimides. Synthesisviacommon lithio intermediates. Helvetica Chimica Acta, 1990, 73, 417-425.	1.6	19
97	Facilitation of Dopamine-Mediated Locomotor Activity in Adult Rats following Cholinergic Denervation. Experimental Neurology, 2002, 174, 96-108.	4.1	19
98	Local Dopaminergic Modulation of the Motor Activity Induced by N-methyl-D-aspartate Receptor Stimulation in the Ventral Hippocampus. Neuropsychopharmacology, 2002, 26, 737-743.	5.4	17
99	Effects of the 5-HT1B receptor antagonist NAS-181 on extracellular levels of acetylcholine, glutamate and GABA in the frontal cortex and ventral hippocampus of awake rats: A microdialysis study. European Neuropsychopharmacology, 2007, 17, 580-586.	0.7	17
100	Typical and atypical antipsychotics do not differ markedly in their reversibility of antagonism of the dopamine D2 receptor. International Journal of Neuropsychopharmacology, 2014, 17, 149-155.	2.1	16
101	The selective 5-HT1A receptor antagonist NAD-299 increases acetylcholine release but not extracellular glutamate levels in the frontal cortex and hippocampus of awake rat. European Neuropsychopharmacology, 2010, 20, 487-500.	0.7	13
102	Central 5â€ <scp>HT</scp> _{1A} receptorâ€mediated modulation of heart rate dynamics and its adjustment by conditioned and unconditioned fear in mice. British Journal of Pharmacology, 2013, 170, 859-870.	5.4	13
103	Prenatal Exposure to Carbamazepine Reduces Hippocampal and Cortical Neuronal Cell Population in New-Born and Young Mice without Detectable Effects on Learning And Memory. PLoS ONE, 2013, 8, e80497.	2.5	13
104	Modeling Parkinson's disease genetics: Altered function of the dopamine system in Adh4 knockout mice. Behavioural Brain Research, 2011, 217, 439-445.	2.2	12
105	Increased phencyclidine-induced hyperactivity following cortical cholinergic denervation. NeuroReport, 2005, 16, 1815-1819.	1.2	11
106	Time-Dependent Effects of Intrahippocampal Galanin on Spatial Learning: Relationship to Distribution and Kinetics. Annals of the New York Academy of Sciences, 1998, 863, 454-456.	3.8	10
107	Nociceptin and the NOP receptor in aversive learning in mice. European Neuropsychopharmacology, 2017, 27, 1298-1307.	0.7	10
108	Distribution of galanin in the brain of a galanin-overexpressing transgenic mouse. Neuropeptides, 2005, 39, 293-298.	2.2	9

#	Article	IF	CITATIONS
109	Dopamine receptor antagonists block nerve growth factor-induced hyperactivity. European Journal of Pharmacology, 1997, 326, 1-5.	3.5	8
110	Atypical but not typical antipsychotic drugs ameliorate phencyclidine-induced emotional memory impairments in mice. European Neuropsychopharmacology, 2019, 29, 616-628.	0.7	8
111	Galanin: Regulation of Cholinergic Function and Behaviour. , 1991, , 193-199.		8
112	Passive Avoidance. , 2013, , 1-10.		7
113	Ontogeny of the motor inhibitory role of dopamine D3 receptor subtype in rats. European Journal of Pharmacology, 2000, 392, 35-39.	3.5	6
114	Analysis of mechanisms for memory enhancement using novel and potent 5-HT1A receptor ligands. European Neuropsychopharmacology, 2015, 25, 1314-1323.	0.7	6
115	Effects of Naltrexone and Acamprosate on Alcohol-Induced NGFI-A Expression in Mouse Brain. Neurochemical Research, 2008, 33, 2062-2069.	3.3	5
116	Involvement of the Striatal Medium Spiny Neurons of the Direct Pathway in the Motor Stimulant Effects of Phencyclidine. International Journal of Neuropsychopharmacology, 2015, 19, pyv134.	2.1	5
117	Passive Avoidance. , 2015, , 1220-1228.		5
118	Prolonged treatment with haloperidol and clozapine in the rat: differential effects on spontaneous and theophylline-induced motor activity. Neuroscience Letters, 1997, 232, 21-24.	2.1	3
119	Classical Neurotransmitters and Neuropeptides. , 2013, , 1835-1841.		3
120	Modulation of a 5-HT1A Receptor-Mediated Behavioral Response by the Neuropeptide Galanin. Annals of the New York Academy of Sciences, 1998, 863, 442-444.	3.8	2
121	Erratum to "Prolonged effects of intraventricular galanin on a 5-hydroxytryptamine1A receptor mediated function in the rat―[Neurosci. Lett. 299 (2001) 145–149]. Neuroscience Letters, 2001, 302, 160.	2.1	0
122	Modulation of neurotransmitter release and metabolism. , 2005, , 47-58.		0
123	Erratum to "Modification of inherent and drug-induced dopaminergic activity after exposure to benzo(α)pyrene―[Neurotoxicology 28 (2007) 860–867]. NeuroToxicology, 2007, 28, 1275.	3.0	0
124	Injection of galanin into the dorsal hippocampus impairs emotional memory independent of 5-HT1A receptor activation. Behavioural Brain Research, 2021, 405, 113178.	2.2	0