Richard Murray Lark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8412527/publications.pdf

Version: 2024-02-01

244 papers

8,335 citations

50244 46 h-index 78 g-index

257 all docs

257 docs citations

times ranked

257

7530 citing authors

#	Article	IF	Citations
1	Carbon losses from all soils across England and Wales 1978–2003. Nature, 2005, 437, 245-248.	13.7	939
2	Groundwater quality and depletion in the Indo-Gangetic Basin mapped from inÂsituÂobservations. Nature Geoscience, 2016, 9, 762-766.	5.4	341
3	On spatial prediction of soil properties in the presence of a spatial trend: the empirical best linear unbiased predictor (E-BLUP) with REML. European Journal of Soil Science, 2006, 57, 787-799.	1.8	232
4	A comparison of some robust estimators of the variogram for use in soil survey. European Journal of Soil Science, 2000, 51, 137-157.	1.8	204
5	Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Continental Shelf Research, 2014, 84, 107-119.	0.9	164
6	Model-based analysis using REML for inference from systematically sampled data on soil. European Journal of Soil Science, 2004, 55, 799-813.	1.8	133
7	Estimating variograms of soil properties by the method-of-moments and maximum likelihood. European Journal of Soil Science, 2000, 51, 717-728.	1.8	132
8	Methodology for the determination of normal background concentrations of contaminants in English soil. Science of the Total Environment, 2013, 454-455, 604-618.	3.9	132
9	Analysis and elucidation of soil variation using wavelets. European Journal of Soil Science, 1999, 50, 185-206.	1.8	126
10	Optimized spatial sampling of soil for estimation of the variogram by maximum likelihood. Geoderma, 2002, 105, 49-80.	2.3	124
11	Geostatistical description of texture on an aerial photograph for discriminating classes of land cover. International Journal of Remote Sensing, 1996, 17, 2115-2133.	1.3	122
12	Scale- and location-dependent correlation of nitrous oxide emissions with soil properties: an analysis using wavelets. European Journal of Soil Science, 2004, 55, 611-627.	1.8	107
13	Soil–landform relationships at within-field scales: an investigation using continuous classification. Geoderma, 1999, 92, 141-165.	2.3	104
14	The nutritional quality of cereals varies geospatially in Ethiopia and Malawi. Nature, 2021, 594, 71-76.	13.7	104
15	Mapping and interpreting the yield variation in cereal crops. Computers and Electronics in Agriculture, 1996, 14, 101-119.	3.7	102
16	Classification as a first step in the interpretation of temporal and spatial variation of crop yield. Annals of Applied Biology, 1997, 130, 111-121.	1.3	96
17	Improved analysis and modelling of soil diffuse reflectance spectra using wavelets. European Journal of Soil Science, 2009, 60, 453-464.	1.8	95
18	Mapping risk of soil nutrient deficiency or excess by disjunctive and indicator kriging. Geoderma, 2004, 118, 39-53.	2.3	78

#	Article	IF	CITATIONS
19	Changes in variance and correlation of soil properties with scale and location: analysis using an adapted maximal overlap discrete wavelet transform. European Journal of Soil Science, 2001, 52, 547-562.	1.8	76
20	Mapping Potential Crop Management Zones within Fields: Use of Yield-map Series and Patterns of Soil Physical Properties Identified by Electromagnetic Induction Sensing. Precision Agriculture, 2005, 6, 167-181.	3.1	73
21	Optimized Sample Schemes for Geostatistical Surveys. Mathematical Geosciences, 2007, 39, 113-134.	0.9	72
22	Assessing urinary flow rate, creatinine, osmolality and other hydration adjustment methods for urinary biomonitoring using NHANES arsenic, iodine, lead and cadmium data. Environmental Health, 2016, 15, 68.	1.7	71
23	Forming spatially coherent regions by classification of multi-variate data: an example from the analysis of maps of crop yield. International Journal of Geographical Information Science, 1998, 12, 83-98.	2.2	67
24	The risk of selenium deficiency in Malawi is large and varies over multiple spatial scales. Scientific Reports, 2019, 9, 6566.	1.6	67
25	Fitting a linear model of coregionalization for soil properties using simulated annealing. Geoderma, 2003, 115, 245-260.	2.3	66
26	Cokriging particle size fractions of the soil. European Journal of Soil Science, 2007, 58, 763-774.	1.8	66
27	Robust analysis of soil properties at the national scale: cadmium content of French soils. European Journal of Soil Science, 2010, 61, 144-152.	1.8	66
28	Airborne radiometric survey data and a DTM as covariates for regional scale mapping of soil organic carbon across Northern Ireland. European Journal of Soil Science, 2009, 60, 44-54.	1.8	65
29	Estimating Variogram Uncertainty. Mathematical Geosciences, 2004, 36, 867-898.	0.9	63
30	Spatio-temporal variability of some metal concentrations in the soil of eastern England, and implications for soil monitoring. Geoderma, 2006, 133, 363-379.	2.3	61
31	Geostatistical mapping of geomorphic variables in the presence of trend. Earth Surface Processes and Landforms, 2006, 31, 862-874.	1.2	61
32	Modelling complex soil properties as contaminated regionalized variables. Geoderma, 2002, 106, 173-190.	2.3	59
33	Changes in soil pH across England and Wales in response to decreased acid deposition. Global Change Biology, 2010, 16, 3111-3119.	4.2	59
34	Generic Issues on Broad-Scale Soil Monitoring Schemes: A Review. Pedosphere, 2012, 22, 456-469.	2.1	59
35	Three-Dimensional Mapping of Soil Chemical Characteristics at Micrometric Scale by Combining 2D SEM-EDX Data and 3D X-Ray CT Images. PLoS ONE, 2015, 10, e0137205.	1.1	59
36	The assessment of point and diffuse metal pollution of soils from an urban geochemical survey of Sheffield, England. Soil Use and Management, 2005, 21, 353-362.	2.6	58

#	Article	IF	CITATIONS
37	Analysing soil variation in two dimensions with the discrete wavelet transform. European Journal of Soil Science, 2004, 55, 777-797.	1.8	56
38	The geostatistical analysis of experiments at the landscape-scale. Geoderma, 2006, 133, 87-106.	2.3	55
39	Robust geostatistical prediction of trace elements across France. Geoderma, 2011, 162, 303-311.	2.3	55
40	Mapping groundwater recharge in Africa from ground observations and implications for water security. Environmental Research Letters, 2021, 16, 034012.	2.2	55
41	Scale-dependent relationships between soil organic carbon and urease activity. European Journal of Soil Science, 2007, 58, 1087-1095.	1.8	54
42	Sampling procedures for throughfall monitoring: A simulation study. Water Resources Research, 2010, 46, .	1.7	54
43	Fertilizer management and soil type influence grain zinc and iron concentration under contrasting smallholder cropping systems in Zimbabwe. Scientific Reports, 2019, 9, 6445.	1.6	54
44	Towards soil geostatistics. Spatial Statistics, 2012, 1, 92-99.	0.9	51
45	Robust estimation of the variogram by residual maximum likelihood. Geoderma, 2007, 140, 62-72.	2.3	50
46	Spatial prediction of soil properties with copulas. Geoderma, 2011, 162, 327-334.	2.3	48
47	Limitations on the Spatial Resolution of Yield Mapping for Combinable Crops. Biosystems Engineering, 1997, 66, 183-193.	0.4	47
48	The Mat \tilde{A} @rn variogram model: Implications for uncertainty propagation and sampling in geostatistical surveys. Geoderma, 2007, 140, 337-345.	2.3	47
49	Spatial monitoring of a nonâ€stationary soil property: phosphorus in a Florida water conservation area. European Journal of Soil Science, 2009, 60, 757-769.	1.8	46
50	Understanding airborne radiometric survey signals across part of eastern England. Earth Surface Processes and Landforms, 2007, 32, 1503-1515.	1.2	45
51	Kriging a soil variable with a simple nonstationary variance model. Journal of Agricultural, Biological, and Environmental Statistics, 2009, 14, 301-321.	0.7	45
52	Application of a novel method for soil aggregate stability measurement by laser granulometry with sonication. European Journal of Soil Science, 2013, 64, 92-103.	1.8	44
53	The use of soil survey data to determine the magnitude and extent of historic metal deposition related to atmospheric smelter emissions across Humberside, UK. Environmental Pollution, 2006, 143, 416-426.	3.7	42
54	Scope to predict soil properties at within-field scale from small samples using proximally sensed \hat{l}^3 -ray spectrometer and EM induction data. Geoderma, 2014, 232-234, 69-80.	2.3	41

#	Article	IF	Citations
55	Two robust estimators of the cross-variogram for multivariate geostatistical analysis of soil properties. European Journal of Soil Science, 2003, 54, 187-202.	1.8	40
56	Spatial prediction of seabed sediment texture classes by cokriging from a legacy database of point observations. Sedimentary Geology, 2012, 281, 35-49.	1.0	40
57	Baseline values and change in the soil, and implications for monitoring. European Journal of Soil Science, 2006, 57, 916-921.	1.8	39
58	Spatial Analysis of Model Error, Illustrated by Soil Carbon Dioxide Emissions. Vadose Zone Journal, 2006, 5, 168-183.	1.3	38
59	Estimating the regional mean status and change of soil properties: two distinct objectives for soil survey. European Journal of Soil Science, 2009, 60, 748-756.	1.8	37
60	A statistical assessment of the uncertainty in a 3-D geological framework model. Proceedings of the Geologists Association, 2013, 124, 946-958.	0.6	37
61	Urine selenium concentration is a useful biomarker for assessing population level selenium status. Environment International, 2020, 134, 105218.	4.8	37
62	Selenium deficiency risks in sub-Saharan African food systems and their geospatial linkages. Proceedings of the Nutrition Society, 2020, 79, 457-467.	0.4	37
63	Regression analysis with spatially autocorrelated error: simulation studies and application to mapping of soil organic matter. International Journal of Geographical Information Science, 2000, 14, 247-264.	2.2	36
64	A Method to Investigate Withinâ€Field Variation of the Response of Combinable Crops to an Input. Agronomy Journal, 2003, 95, 1093-1104.	0.9	36
65	Adaptive sampling and reconnaissance surveys for geostatistical mapping of the soil. European Journal of Soil Science, 2006, 57, 831-845.	1.8	36
66	Uncertainty in prediction and interpretation of spatially variable data on soils. Geoderma, 1997, 77, 263-282.	2.3	35
67	Spatial evaluation of pedotransfer functions using wavelet analysis. Journal of Hydrology, 2007, 333, 182-198.	2.3	35
68	Ten challenges for the future of pedometrics. Geoderma, 2021, 401, 115155.	2.3	35
69	Robust estimation of the pseudo cross-variogram for cokriging soil properties. European Journal of Soil Science, 2002, 53, 253-270.	1.8	34
70	Three-dimensionalÂsoilÂorganicÂmatterÂdistribution, accessibilityÂandÂmicrobialÂrespirationÂinÂmacroaggregatesÂusingÂosmiumÂstaining andÂsynchrotronÂX-rayÂcomputed tomography. Soil, 2016, 2, 659-671.	2.2	34
71	Approaches to Management Zone Definition for Use of Nitrification Inhibitors. Soil Science Society of America Journal, 2003, 67, 937.	1.2	34
72	Components of accuracy of maps with special reference to discriminant analysis on remote sensor data. International Journal of Remote Sensing, 1995, 16, 1461-1480.	1.3	33

#	Article	IF	CITATIONS
73	Estimating a boundary line model for a biological response by maximum likelihood. Annals of Applied Biology, 2006, 149, 223-234.	1.3	33
74	Spatially nested sampling schemes for spatial variance components: Scope for their optimization. Computers and Geosciences, 2011, 37, 1633-1641.	2.0	33
75	Site-Specific Factors Influence the Field Performance of a Zn-Biofortified Wheat Variety. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	33
76	Estimation of Linear Models of Coregionalization by Residual Maximum Likelihood. European Journal of Soil Science, 2007, 58, 1506-1513.	1.8	32
77	Mapping trace element deficiency by cokriging from regional geochemical soil data: A case study on cobalt for grazing sheep in Ireland. Geoderma, 2014, 226-227, 64-78.	2.3	32
78	Using a process model and regression kriging to improve predictions of nitrous oxide emissions from soil. Geoderma, 2006, 135, 107-117.	2.3	31
79	Mapping aerial metal deposition in metropolitan areas from tree bark: A case study in Sheffield, England. Environmental Pollution, 2008, 155, 164-173.	3.7	31
80	Inferences from fluctuations in the local variogram about the assumption of stationarity in the variance. Geoderma, 2008, 143, 123-132.	2.3	31
81	Enhancing the value of field experimentation through whole-of-block designs. Precision Agriculture, 2010, 11, 198-213.	3.1	31
82	The relationship between diffuse spectral reflectance of the soil and its cation exchange capacity is scale-dependent. Geoderma, 2010, 154, 353-358.	2.3	31
83	Introduction to Spatial Econometrics. Journal of the Royal Statistical Society Series A: Statistics in Society, 2011, 174, 513-514.	0.6	31
84	Multi-scale variability of beach profiles at Duck: A wavelet analysis. Coastal Engineering, 2005, 52, 1133-1153.	1.7	30
85	Quantifying terrestrial carbon stocks: examining the spatial variation in two upland areas in the UK and a comparison to mapped estimates of soil carbon. Soil Use and Management, 2009, 25, 320-332.	2.6	29
86	Using Yield Maps to Regionalize Fields into Potential Management Units. Assa, Cssa and Sssa, 0, , 225-237.	0.6	29
87	Multiresolution analysis of data on electrical conductivity of soil using wavelets. Journal of Hydrology, 2003, 272, 276-290.	2.3	28
88	Exploring scale-dependent correlation of soil properties by nested sampling. European Journal of Soil Science, 2005, 56, 307-317.	1.8	28
89	The wavelet packet transform: A technique for investigating temporal variation of river water solutes. Journal of Hydrology, 2009, 379, 1-19.	2.3	28
90	Characterising the within-field scale spatial variation of nitrogen in a grassland soil to inform the efficient design of in-situ nitrogen sensor networks for precision agriculture. Agriculture, Ecosystems and Environment, 2016, 230, 294-306.	2.5	28

#	Article	IF	CITATIONS
91	How should a spatial-coverage sample design for a geostatistical soil survey be supplemented to support estimation of spatial covariance parameters?. Geoderma, 2018, 319, 89-99.	2.3	28
92	Designing sampling grids from imprecise information on soil variability, an approach based on the fuzzy kriging variance. Geoderma, 2000, 98, 35-59.	2.3	27
93	Sensing the physical and nutritional status of the root environment in the field: a review of progress and opportunities. Journal of Agricultural Science, 2005, 143, 347-358.	0.6	27
94	Analysis of variance in soil research: let the analysis fit the design. European Journal of Soil Science, 2018, 69, 126-139.	1.8	27
95	Efficient sampling for geostatistical surveys. European Journal of Soil Science, 2019, 70, 975-989.	1.8	27
96	Zinc deficiency is highly prevalent and spatially dependent over short distances in Ethiopia. Scientific Reports, 2021, 11, 6510.	1.6	27
97	Wavelet analysis of the scale- and location-dependent correlation of modelled and measured nitrous oxide emissions from soil. European Journal of Soil Science, 2005, 56, 3-17.	1.8	26
98	Using expert knowledge with control of false discovery rate to select regressors for prediction of soil properties. Geoderma, 2007, 138, 65-78.	2.3	26
99	Digital soil mapping of a coastal acid sulfate soil landscape. Soil Research, 2014, 52, 327.	0.6	26
100	Some tools for parsimonious modelling and interpretation of within-field variation of soil and crop systems. Soil and Tillage Research, 2001, 58, 99-111.	2.6	24
101	A landscape-scale experiment on the changes in available potassium over a winter wheat cropping season. Geoderma, 2007, 141, 384-396.	2.3	24
102	Quality measures for soil surveys by lognormal kriging. Geoderma, 2012, 173-174, 231-240.	2.3	24
103	When unlikely outcomes occur: the role of communication format in maintaining communicator credibility. Journal of Risk Research, 2019, 22, 537-554.	1.4	24
104	Spatial prediction of the concentration of selenium (Se) in grain across part of Amhara Region, Ethiopia. Science of the Total Environment, 2020, 733, 139231.	3.9	24
105	Performance of linear mixed models and random forests for spatial prediction of soil pH. Geoderma, 2021, 397, 115079.	2.3	24
106	Can we predict the provenance of a soil sample for forensic purposes by reference to a spatial database?. European Journal of Soil Science, 2008, 59, 1000-1006.	1.8	23
107	Spatial variation of ammonia volatilization from soil and its scaleâ€dependent correlation with soil properties. European Journal of Soil Science, 2008, 59, 1260-1270.	1.8	23
108	Interpretative modelling of a geological cross section from boreholes: sources of uncertainty and their quantification. Solid Earth, 2014 , 5 , $1189-1203$.	1.2	23

#	Article	IF	CITATIONS
109	Communicating the uncertainty in estimated greenhouse gas emissions from agriculture. Journal of Environmental Management, 2015, 160, 139-153.	3.8	23
110	Towards the explanation of within-field variability of yield of winter barley: soil series differences. Journal of Agricultural Science, 1998, 131, 409-416.	0.6	22
111	Selenium Deficiency Is Widespread and Spatially Dependent in Ethiopia. Nutrients, 2020, 12, 1565.	1.7	22
112	Nitrogen effect on zinc biofortification of maize and cowpea in Zimbabwean smallholder farms. Agronomy Journal, 2020, 112, 2256-2274.	0.9	22
113	Longâ€term zeroâ€tillage enhances the protection of soil carbon in tropical agriculture. European Journal of Soil Science, 2021, 72, 2477-2492.	1.8	22
114	A reappraisal of unsupervised classification, I: correspondence between spectral and conceptual classes. International Journal of Remote Sensing, 1995, 16, 1425-1443.	1.3	21
115	An investigation of the multi-scale temporal variability of beach profiles at Duck using wavelet packet transforms. Coastal Engineering, 2007, 54, 401-415.	1.7	21
116	Accounting for the uncertainty in the local mean in spatial prediction by Bayesian Maximum Entropy. Stochastic Environmental Research and Risk Assessment, 2007, 21, 773-784.	1.9	21
117	Wavelet Transforms Applied to Irregularly Sampled Soil Data. Mathematical Geosciences, 2009, 41, 661-678.	1.4	21
118	Using measurements close to a detection limit in a geostatistical case study to predict selenium concentration in topsoil. Geoderma, 2009, 152, 269-282.	2.3	21
119	Wavelet analysis of the correlations between soil properties and potential nitrous oxide emission at farm and landscape scales. European Journal of Soil Science, 2011, 62, 467-478.	1.8	21
120	Land use and lead content in the soils of London. Geoderma, 2013, 209-210, 65-74.	2.3	21
121	Understanding â€~Unlikely (20% Likelihood)' or â€~20% Likelihood (Unlikely)' Outcomes: The Robustness the Extremity Effect. Journal of Behavioral Decision Making, 2018, 31, 572-586.	of 1.0	21
122	Analysis of variance in soil research: Examining the assumptions. European Journal of Soil Science, 2019, 70, 990-1000.	1.8	21
123	Sampling and analytical plus subsampling variance components for five soil indicators observed at regional scale. European Journal of Soil Science, 2009, 60, 740-747.	1.8	20
124	Modelling non-stationary variance of soil properties by tempering an empirical spectrum. Geoderma, 2009, 153, 18-28.	2.3	20
125	Optimized multi-phase sampling for soil remediation surveys. Spatial Statistics, 2013, 4, 1-13.	0.9	20
126	Combining observations with acoustic swath bathymetry and backscatter to map seabed sediment texture classes: The empirical best linear unbiased predictor. Sedimentary Geology, 2015, 328, 17-32.	1.0	20

#	Article	IF	CITATIONS
127	An empirical method for describing the joint effects of environmental and other variables on crop yield. Annals of Applied Biology, 1997, 131, 141-159.	1.3	19
128	Spatial covariation of Azotobacter abundance and soil properties: A case study using the wavelet transform. Soil Biology and Biochemistry, 2007, 39, 295-310.	4.2	19
129	Boundary line analysis of the effect of waterâ€filled pore space on nitrous oxide emission from cores of arable soil. European Journal of Soil Science, 2016, 67, 148-159.	1.8	19
130	Spectral and wavelet analysis of gilgai patterns from air photography. Soil Research, 2010, 48, 309.	0.6	19
131	Approaches to Management Zone Definition for Use of Nitrification Inhibitors. Soil Science Society of America Journal, 2003, 67, 937-947.	1.2	18
132	Designing a sampling scheme to reveal correlations between weeds and soil properties at multiple spatial scales. Weed Research, 2016, 56, 1-13.	0.8	17
133	Implications of shortâ€range spatial variation of soil bulk density for adequate fieldâ€sampling protocols: methodology and results from two contrasting soils. European Journal of Soil Science, 2014, 65, 803-814.	1.8	16
134	Multi-objective optimization of spatial sampling. Spatial Statistics, 2016, 18, 412-430.	0.9	16
135	Analysing spatially intermittent variation of nitrous oxide emissions from soil with wavelets and the implications for sampling. European Journal of Soil Science, 2004, 55, 601-610.	1.8	15
136	Estimating the local mean for Bayesian maximum entropy by generalized least squares and maximum likelihood, and an application to the spatial analysis of a censored soil variable. European Journal of Soil Science, 2007, 58, 60-73.	1.8	15
137	Some considerations on aggregate sample supports for soil inventory and monitoring. European Journal of Soil Science, 2012, 63, 86-95.	1.8	15
138	Soil apparent conductivity measurements for planning and analysis of agricultural experiments: A case study from Western-Thailand. Geoderma, 2016, 267, 220-229.	2.3	15
139	Defining the habitat niche of <i>Alopecurus myosuroides</i> at the field scale. Weed Research, 2018, 58, 165-176.	0.8	15
140	Can uncertainty in geological cross-section interpretations be quantified and predicted?., 2018, 14, 1087-1100.		15
141	Combining two nationalâ€scale datasets to map soil properties, the case of available magnesium in England and Wales. European Journal of Soil Science, 2019, 70, 361-377.	1.8	15
142	Uncertainty in geological interpretations: Effectiveness of expert elicitations., 2019, 15, 108-118.		15
143	A geostatistical descriptor of the spatial distribution of soil classes, and its use in predicting the purity of possible soil map units. Geoderma, 1998, 83, 243-267.	2.3	14
144	Agronomic biofortification of leafy vegetables grown in an Oxisol, Alfisol and Vertisol with isotopically labelled selenium (77Se). Geoderma, 2020, 361, 114106.	2.3	14

#	Article	IF	CITATIONS
145	A comparison between techniques for estimating the ages of African elephants (<i>Loxodonta) Tj ETQq1 1 0.7843</i>	14 rgBT /0.4	Overlock 10
146	On testing biological data for the presence of a boundary. Annals of Applied Biology, 2006, 149, 213-222.	1.3	13
147	Inference about soil variability from the structure of the best wavelet packet basis. European Journal of Soil Science, 2007, 58, 822-831.	1.8	13
148	Spatial prediction of soil organic carbon from data on large and variable spatial supports. I. Inventory and mapping. Environmetrics, 2012, 23, 129-147.	0.6	13
149	Gradual and anthropogenic soil change for fertility and carbon on marginal sandy soils. Geoderma, 2013, 207-208, 35-48.	2.3	13
150	Uncertainty in mapped geological boundaries held by a national geological survey: eliciting the geologists' tacit error model. Solid Earth, 2015, 6, 727-745.	1.2	13
151	Nested sampling and spatial analysis for reconnaissance investigations of soil: an example from agricultural land near mine tailings in Zambia. European Journal of Soil Science, 2017, 68, 605-620.	1.8	13
152	A geostatistical extension of the sectioning procedure for disaggregating soil information to the scale of functional models of soil processes. Geoderma, 2000, 95, 89-112.	2.3	12
153	The representation of complex soil variation on wavelet packet bases. European Journal of Soil Science, 2006, 57, 868-882.	1.8	12
154	A linear mixed model, with non-stationary mean and covariance, for soil potassium based on gamma radiometry. Biogeosciences, 2010, 7, 2081-2089.	1.3	12
155	Spectral tempering to model non-stationary covariance of nitrous oxide emissions from soil using continuous or categorical explanatory variables at a landscape scale. Geoderma, 2010, 159, 358-370.	2.3	12
156	Wavelet analysis of soil variation at nanometre- to micrometre-scales: an example of organic carbon content in a micro-aggregate. European Journal of Soil Science, 2011, 62, 617-628.	1.8	12
157	Modelling complex geological circular data with the projected normal distribution and mixtures of von Mises distributions. Solid Earth, 2014, 5, 631-639.	1.2	12
158	The implicit loss function for errors in soil information. Geoderma, 2015, 251-252, 24-32.	2.3	12
159	Spatial geochemistry influences the home range of elephants. Science of the Total Environment, 2020, 729, 139066.	3.9	12
160	Resolving the spatial variability of soil N using fractions of soil organic matter. Agriculture, Ecosystems and Environment, 2012, 147, 66-72.	2.5	11
161	Which sampling design to monitor saturated hydraulic conductivity?. European Journal of Soil Science, 2014, 65, 792-802.	1.8	11
162	An improved method for measurement of soil aggregate stability using laser granulometry applied at regional scale. European Journal of Soil Science, 2015, 66, 604-614.	1.8	11

#	Article	IF	CITATIONS
163	Changes in the variance of a soil property along a transect, a comparison of a non-stationary linear mixed model and a wavelet transform. Geoderma, 2016, 266, 84-97.	2.3	11
164	Do soil amendments used to improve agricultural productivity have consequences for soils contaminated with heavy metals?. Heliyon, 2020, 6, e05502.	1.4	11
165	Boundary line models for soil nutrient concentrations and wheat yield in nationalâ€scale datasets. European Journal of Soil Science, 2020, 71, 334-351.	1.8	11
166	Digital Soil Mapping Technologies for Countries with Sparse Data Infrastructures. , 2008, , 15-30.		11
167	Exploring the variation in soil saturated hydraulic conductivity under a tropical rainforest using the wavelet transform. European Journal of Soil Science, 2011, 62, 891-901.	1.8	10
168	Spatial prediction of soil organic carbon from data on large and variable spatial supports. II. Mapping temporal change. Environmetrics, 2012, 23, 148-161.	0.6	10
169	Reconnaissance sampling and determination of hexavalent chromium in potentially-contaminated agricultural soils in Copperbelt Province, Zambia. Chemosphere, 2020, 247, 125984.	4.2	10
170	Spatial variability and mapping of soil fertility status in a high-potential smallholder farming area under sub-humid conditions in Zimbabwe. SN Applied Sciences, 2021, 3, 1.	1.5	10
171	Soil and landscape factors influence geospatial variation in maize grain zinc concentration in Malawi. Scientific Reports, 2022, 12, 7986.	1.6	10
172	A time series model of daily milk yields and its possible use for detection of a disease (ketosis). Animal Science, 1999, 69, 573-582.	1.3	9
173	Scale- and location-dependent correlations of soil strength and the yield of wheat. Soil and Tillage Research, 2007, 95, 47-60.	2.6	9
174	Controlling the marginal false discovery rate in inferences from a soil dataset with ⟨i⟩î±⟨ i⟩â€investment. European Journal of Soil Science, 2017, 68, 221-234.	1.8	9
175	The singularity index for soil geochemical variables, and a mixture model for its interpretation. Geoderma, 2018, 323, 83-106.	2.3	9
176	Increasing zinc concentration in maize grown under contrasting soil types in Malawi through agronomic biofortification: Trial protocol for a field experiment to detect small effect sizes. Plant Direct, 2020, 4, e00277.	0.8	9
177	The behaviour of soil process models of ammonia volatilization at contrasting spatial scales. European Journal of Soil Science, 2008, 59, 1271-1283.	1.8	8
178	Spatial analysis of the error in a model of soil nitrogen. Ecological Modelling, 2008, 211, 453-467.	1.2	8
179	Analysis of two variants of a spatially distributed crop model, using wavelet transforms and geostatistics. Agricultural Systems, 2008, 98, 135-146.	3.2	8
180	Reply to "Standardized vs. customary ordinary cokriging…―by A. Papritz. Geoderma, 2008, 146, 397-399.	2.3	8

#	Article	IF	CITATIONS
181	Two contrasting spatial processes with a common variogram: inference about spatial models from higherâ€order statistics. European Journal of Soil Science, 2010, 61, 479-492.	1.8	8
182	Assessing land suitability for rainfed paddy rice production in Zambia. Geoderma Regional, 2021, 27, e00438.	0.9	8
183	Title is missing!. , 1998, 50, 277-281.		7
184	A comparison of parametric and non-parametric methods for modelling a coregionalization. Geoderma, 2008, 148, 13-24.	2.3	7
185	A reappraisal of unsupervised classification, II: optimal adjustment of the map legend and a neighbourhood approach for mapping legend units. International Journal of Remote Sensing, 1995, 16, 1445-1460.	1.3	6
186	A stochasticâ€geometric model of soil variation. European Journal of Soil Science, 2009, 60, 706-719.	1.8	6
187	Distinguishing spatially correlated random variation in soil from a †pure nugget' process. Geoderma, 2012, 185-186, 102-109.	2.3	6
188	Communicating uncertainties in spatial predictions of grain micronutrient concentration. Geoscience Communication, 2021, 4, 245-265.	0.5	6
189	Sample size and class variability in the choice of a method of discriminant analysis. International Journal of Remote Sensing, 1994, 15, 1551-1555.	1.3	5
190	Contributions of principal components to discrimination of classes of land cover in multi-spectral imagery. International Journal of Remote Sensing, 1995, 16, 779-787.	1.3	5
191	Nonâ€homogeneity of variance components from spatially nested sampling of the soil. European Journal of Soil Science, 2009, 60, 443-452.	1.8	5
192	The Analysis of Spatial Experiments. , 2010, , 243-267.		5
193	The role of periâ€glacial active layer development in determining soilâ€regolith thickness across a Triassic sandstone outcrop in the UK. Earth Surface Processes and Landforms, 2012, 37, 971-983.	1.2	5
194	Wavelet Analysis of the Variability of Nitrous Oxide Emissions from Soil at Decameter to Kilometer Scales. Journal of Environmental Quality, 2013, 42, 1070-1079.	1.0	5
195	An index to represent lateral variation of the confidence of experts in a 3-D geological model. Proceedings of the Geologists Association, 2014, 125, 267-278.	0.6	5
196	Planning spatial sampling of the soil from an uncertain reconnaissance variogram. Soil, 2017, 3, 235-244.	2.2	5
197	Longitudinal analysis of a long-term conservation agriculture experiment in Malawi and lessons for future experimental design. Experimental Agriculture, 2020, 56, 506-527.	0.4	5
198	Can Nitrogen Fertilizer Management Improve Grain Iron Concentration of Agro-Biofortified Crops in Zimbabwe?. Agronomy, 2021, 11, 124.	1.3	5

#	Article	IF	CITATIONS
199	Decisions, uncertainty and spatial information. Spatial Statistics, 2022, 50, 100619.	0.9	5
200	Compositional Data Analysis in the Geosciences: from Theory to Practice. Journal of the Royal Statistical Society Series A: Statistics in Society, 2008, 171, 313-314.	0.6	4
201	On effective linearity of soil process models. European Journal of Soil Science, 2008, 59, 990-999.	1.8	4
202	The Bayesian maximum entropy method for lognormal variables. Stochastic Environmental Research and Risk Assessment, 2009, 23, 319-328.	1.9	4
203	Spectral tempering to model non-stationary variation of soil properties: Sensitivity to the initial stationary model. Geoderma, 2010, 159, 350-357.	2.3	4
204	Geostatistical prediction of nitrous oxide emissions from soil using data, process models and expert opinion. European Journal of Soil Science, 2011, 62, 359-370.	1.8	4
205	Consistency And Change In Spatial Variability Of Crop Yield Over Successive Seasons: Methods Of Data Analysis. Assa, Cssa and Sssa, 2015, , 141-149.	0.6	4
206	How does temporal variation affect the value of stream water as a medium for regional geochemical survey?. Journal of Geochemical Exploration, 2016, 169, 211-233.	1.5	4
207	Stochastic modelling of hydraulic conductivity derived from geotechnical data; an example applied to central Glasgow. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2017, 108, 141-154.	0.3	4
208	Burgess, T.M. & Detail interpolation and isarithmic mapping of soil properties. I. The semiâ€variogram and punctual kriging. ⟨i⟩Journal of Soil Science⟨/i⟩, 31, 315–331 European Journal of Soil Science, 2019, 70, 7-10.	1.8	4
209	Potential bio-indicators for assessment of mineral status in elephants. Scientific Reports, 2020, 10, 8032.	1.6	4
210	Spatial analysis of urine zinc (Zn) concentration for women of reproductive age and school age children in Malawi. Environmental Geochemistry and Health, 2021, 43, 259-271.	1.8	4
211	Sampling in Precision Agriculture, Optimal Designs from Uncertain Models. , 2010, , 65-87.		4
212	Biofortified Maize Improves Selenium Status of Women and Children in a Rural Community in Malawi: Results of the Addressing Hidden Hunger With Agronomy Randomized Controlled Trial. Frontiers in Nutrition, 2021, 8, 788096.	1.6	4
213	A regular pattern in the relative areas of soil profile classes and possible applications in reconnaissance soil survey. Geoderma, 1995, 68, 27-37.	2.3	3
214	Analysis of Complex Soil Variation Using Wavelets. Books in Soils, Plants, and the Environment, 2005, , 343-372.	0.1	3
215	Pedometrics 2003. Geoderma, 2005, 128, 177-178.	2.3	3
216	A stochastic geometric model for continuous local trends in soil variation. Geoderma, 2012, 189-190, 661-670.	2.3	3

#	Article	IF	Citations
217	Using Geostatistics to Analyze Prediction Errors from a Simulation Model of Sediment Particle Sizes across Tokyo Bay. Journal of Coastal Research, 2012, 29, 145.	0.1	3
218	Block correlation and the spatial resolution of soil property maps made by kriging. Geoderma, 2015, 259-260, 233-242.	2.3	3
219	Scope of Pedometrics. Progress in Soil Science, 2018, , 7-39.	0.4	3
220	Information on within-field variability from sequences of yield maps: multivariate classification as a first step of interpretation., 1998,, 277-281.		3
221	Understanding and Using Yield Maps — An Analytical Tool for Their Interpretation. Outlook on Agriculture, 2000, 29, 39-45.	1.8	2
222	Chapter 23 Decomposing Digital Soil Information by Spatial Scale. Developments in Soil Science, 2006, 31, 301-616.	0.5	2
223	Some Results on the Spatial Breakdown Point of Robust Point Estimates of the Variogram. Mathematical Geosciences, 2008, 40, 729-751.	1.4	2
224	The effects of simple perturbations of a process model on the spatial variability of its output. Geoderma, 2008, 145, 267-277.	2.3	2
225	The offset correlation, a novel quality measure for planning geochemical surveys of the soil by kriging. Geoderma, 2013, 197-198, 27-35.	2.3	2
226	Editorial: statistics in the journal. European Journal of Soil Science, 2016, 67, 133-134.	1.8	2
227	Classical Soil Geostatistics. Progress in Soil Science, 2018, , 291-340.	0.4	2
228	Crop uptake of heavy metals in response to the environment and agronomic practices on land near mine tailings in the Zambian Copperbelt Province. Environmental Geochemistry and Health, 2021, 43, 3699-3713.	1.8	2
229	A comparison between three legacy soil maps of Zambia at national scale: The spatial patterns of legend units and their relation to soil properties. Geoderma, 2021, 402, 115193.	2.3	2
230	On Soil Carbon Monitoring Networks. , 2014, , 59-68.		2
231	Investigating the effect of previous treatments on wheat biomass over multiple spatial frequencies. Biogeosciences, 2010, 7, 2739-2747.	1.3	2
232	The effect of water deficit and livestock stocking density on soil organic carbon stocks in Namibia. Geoderma, 2022, 407, 115522.	2.3	2
233	Stakeholder interpretation of probabilistic representations of uncertainty in spatial information: an example on the nutritional quality of staple crops. International Journal of Geographical Information Science, 0, , 1-27.	2.2	2
234	Spatial analysis of categorical soil variables with the wavelet transform. European Journal of Soil Science, 2005, 56, 050912034650045.	1.8	1

#	Article	IF	CITATIONS
235	Using Wavelets to Analyse Proximally Sensed Vis–NIR Soil Spectra. , 2010, , 201-210.		1
236	Using third-order cumulants to investigate spatial variation: A case study on the porosity of the Bunter Sandstone. Spatial Statistics, 2015 , 11 , $96-112$.	0.9	1
237	Complex Soil Variation over Multiple Scales. Progress in Soil Science, 2018, , 463-490.	0.4	1
238	Mineral micronutrient status and spatial distribution among the Ethiopian population. British Journal of Nutrition, 2022, , 1-30.	1.2	1
239	The Cambridge Dictionary of Statistics (4th Edition) - by Everitt, B.S. & Skrondal, A European Journal of Soil Science, 2011, 62, 333-333.	1.8	0
240	Pedometrics. European Journal of Soil Science, 2011, 62, 335-336.	1.8	0
241	A stochastic–geometric model of the variability of soil formed in Pleistocene patterned ground. Geoderma, 2014, 213, 533-543.	2.3	0
242	Broad-Scale Soil Monitoring Schemes. Progress in Soil Science, 2018, , 669-691.	0.4	0
243	Accessing and assessing legacy soil information, an example from two provinces of Zambia. Geoderma, 2022, 420, 115874.	2.3	0
244	Sub-sampling a large physical soil archive for additional analyses to support spatial mapping; a pre-registered experiment in the Southern Nations, Nationalities, and Peoples Region (SNNPR) of Ethiopia. Geoderma, 2022, 424, 116013.	2.3	0