
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8412404/publications.pdf Version: 2024-02-01

RENIAMIN RUSAK

#	Article	IF	CITATIONS
1	Even a Mild Sleep Restriction Can Impact Daytime Functioning in Children with ADHD and Their Typically Developing Peers. Behavioral Sleep Medicine, 2022, 20, 21-36.	1.1	4
2	Altered circadian activity and sleep/wake rhythms in the stable tubule only polypeptide (STOP) null mouse model of schizophrenia. Sleep, 2021, 44, .	0.6	4
3	Sleep Variables as Predictors of Treatment Effectiveness and Side Effects of Stimulant Medication in Newly Diagnosed Children with Attention-Deficit/Hyperactivity Disorder. Journal of Developmental and Behavioral Pediatrics, 2021, 42, 1-8.	0.6	4
4	The Effects of Extended-Release Stimulant Medication on Sleep in Children with ADHD. Journal of the Canadian Academy of Child and Adolescent Psychiatry, 2020, 29, 33-43.	0.7	4
5	The Impact of Sleep Restriction on Daytime Functioning in School-Age Children With and Without ADHD: A Narrative Review of the Literature. Canadian Journal of School Psychology, 2019, 34, 188-214.	1.6	11
6	Sleep in Offspring of Parents With Mood Disorders. Frontiers in Psychiatry, 2019, 10, 225.	1.3	13
7	The coupling of short sleep duration and high sleep need predicts riskier decision making. Psychology and Health, 2019, 34, 1196-1213.	1.2	8
8	Intercellular Interactions and the Physiology of Circadian Rhythms in Mammals. , 2019, , 31-44.		2
9	Acute Sleep Restriction Has Differential Effects on Components of Attention. Frontiers in Psychiatry, 2018, 9, 499.	1.3	19
10	"Time Present and Time Pastâ€*. , 2018, , 47-67.		3
11	Lateralized microstructural changes in early-stage Parkinson's disease in anterior olfactory structures, but not in substantia nigra. Journal of Neurology, 2017, 264, 1497-1505.	1.8	16
12	1091 YOUTH'S BEDTIME REGULARITY MEDIATES THE ASSOCIATION OF DEPRESSION AND ANXIETY WITH NEGATIVE ATTENTION BIAS. Sleep, 2017, 40, A407-A407.	0.6	1
13	Concordance of actigraphy with polysomnography in children with and without attentionâ€deficit/hyperactivity disorder. Journal of Sleep Research, 2016, 25, 524-533.	1.7	16
14	Exponential state transition dynamics in the rest–activity architecture of patients with bipolar disorder. Bipolar Disorders, 2016, 18, 116-123.	1.1	4
15	Agomelatine affects rat suprachiasmatic nucleus neurons via melatonin and serotonin receptors. Life Sciences, 2016, 155, 147-154.	2.0	10
16	Disruptions of Sleep/Wake Patterns in the Stable Tubule Only Polypeptide (STOP) Null Mouse Model of Schizophrenia. Schizophrenia Bulletin, 2016, 42, 1207-1215.	2.3	11
17	Psychomotor Vigilance Task Performance During and Following Chronic Sleep Restriction in Rats. Sleep, 2015, 38, 515-528.	0.6	25
18	Emotional and Cognitive Impact of Sleep Restriction in Children. Sleep Medicine Clinics, 2015, 10, 107-115.	1.2	58

#	Article	IF	CITATIONS
19	The role of lateral habenula–dorsal raphe nucleus circuits in higher brain functions and psychiatric illness. Behavioural Brain Research, 2015, 277, 89-98.	1.2	102
20	Cognitive Test Performance in Relation to Health and Function in 12 European Countries: The SHARE Study. Canadian Geriatrics Journal, 2015, 18, 144-151.	0.7	12
21	Sleep disturbance in older ICU patients. Clinical Interventions in Aging, 2014, 9, 969.	1.3	38
22	Impact of menstrual cycle phase on endocrine effects of partial sleep restriction in healthy women. Psychoneuroendocrinology, 2014, 49, 34-46.	1.3	20
23	NPAS3 variants in schizophrenia: a neuroimaging study. BMC Medical Genetics, 2014, 15, 37.	2.1	1
24	Manipulating Sleep Duration Alters Emotional Functioning and Cognitive Performance in Children. Journal of Pediatric Psychology, 2013, 38, 1058-1069.	1.1	176
25	Sleep Disturbance is Associated with Incident Dementia and Mortality. Current Alzheimer Research, 2013, 10, 767-775.	0.7	149
26	Time-of-day modulation of homeostatic and allostatic sleep responses to chronic sleep restriction in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1411-R1425.	0.9	28
27	Sleep Quantity and Quality in Relation to Daytime Functioning in Children. Children's Health Care, 2012, 41, 204-222.	0.5	36
28	Smaller volumes of caudate nuclei in prepubertal children with ADHD: Impact of age. Journal of Psychiatric Research, 2012, 46, 1066-1072.	1.5	16
29	Female Reproductive Hormones Alter Sleep Architecture in Ovariectomized Rats. Sleep, 2011, 34, 519-530.	0.6	52
30	Circadian Rhythms in Mammals. , 2011, , 363-375.		9
31	MRI-related anxiety levels change within and between repeated scanning sessions. Psychiatry Research - Neuroimaging, 2010, 182, 160-164.	0.9	52
32	Impact of acute sleep restriction on cortisol and leptin levels in young women. Physiology and Behavior, 2010, 99, 651-656.	1.0	194
33	Short-term sleep deprivation may alter the dynamics of hippocampal cell proliferation in adult rats. Neuroscience, 2010, 170, 1140-1152.	1.1	39
34	Estradiol and Progesterone Modulate Spontaneous Sleep Patterns and Recovery from Sleep Deprivation in Ovariectomized Rats. Sleep, 2009, , .	0.6	19
35	Estradiol and progesterone modulate spontaneous sleep patterns and recovery from sleep deprivation in ovariectomized rats. Sleep, 2009, 32, 865-77.	0.6	44
36	Effects of overnight sleep restriction on brain chemistry and mood in women with unipolar depression and healthy controls. Journal of Psychiatry and Neuroscience, 2009, 34, 352-60.	1.4	17

#	Article	IF	CITATIONS
37	Transforming growth factor-α and glial fibrillary acidic protein in the hamster circadian system: Daily profile and cellular localization. Brain Research, 2008, 1197, 94-105.	1.1	17
38	Repeated neonatal separation results in different neurochemical and behavioral changes in adult male and female Mongolian gerbils. Pharmacology Biochemistry and Behavior, 2008, 88, 533-541.	1.3	15
39	Lack of estradiol modulation of sleep deprivation-induced c-Fos in the rat brain. Physiology and Behavior, 2008, 95, 562-569.	1.0	3
40	Estradiol replacement enhances sleep deprivation-induced c-Fos immunoreactivity in forebrain arousal regions of ovariectomized rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1328-R1340.	0.9	29
41	Commentary: The Importance of Sleep in Pediatric Chronic PainA Wake-up Call for Pediatric Psychologists. Journal of Pediatric Psychology, 2007, 33, 333-334.	1.1	12
42	Optic enucleation eliminates circadian rhythm shifts induced by stimulating the intergeniculate leaflet in Syrian hamsters. Neuroscience Letters, 2007, 427, 107-111.	1.0	1
43	Juxtacellular Recording/Labeling Analysis of Physiological and Anatomical Characteristics of Rat Intergeniculate Leaflet Neurons. Journal of Neuroscience, 2005, 25, 9195-9204.	1.7	38
44	Gastrin-releasing peptide induces c-Fos in the hamster suprachiasmatic nucleus. Neuroscience Letters, 2005, 384, 205-210.	1.0	20
45	Circadian firing-rate rhythms and light responses of rat habenular nucleus neurons in vivo and in vitro. Neuroscience, 2005, 132, 519-528.	1.1	134
46	Circadian and light regulation of oxytocin and parvalbumin protein levels in the ciliated ependymal layer of the third ventricle in the C57 mouse. Neuroscience, 2005, 134, 539-547.	1.1	19
47	Circadian Rhythms in Mammals: Formal Properties and Environmental Influences. , 2005, , 321-334.		23
48	Housing conditions influence the expression of food-anticipatory activity in mice. Physiology and Behavior, 2004, 83, 447-457.	1.0	19
49	Restraint stress affects hippocampal cell proliferation differently in rats and mice. Neuroscience Letters, 2004, 368, 7-10.	1.0	75
50	Oxytocin levels in the plasma and cerebrospinal fluid of male rats: effects of circadian phase, light and stress. Neuroscience Letters, 2004, 367, 144-147.	1.0	37
51	Electrophysiology of optic nerve input to suprachiasmatic nucleus neurons in rats and degus. Brain Research, 2003, 960, 142-151.	1.1	26
52	Chapter VI Immediate-early gene expression in the analysis of circadian rhythms and sleep. Handbook of Chemical Neuroanatomy, 2002, , 147-170.	0.3	2
53	Anatomical and temporal differences in the regulation of ZIF268 (NGFI-A) protein in the hamster and mouse suprachiasmatic nucleus. Neuroscience, 2002, 111, 567-574.	1.1	6
54	Entrainment impaired, masking spared: an apparent genetic abnormality that prevents circadian rhythm entrainment to 24-h lighting cycles in California mice. Neuroscience Letters, 2002, 327, 203-207.	1.0	5

#	Article	IF	CITATIONS
55	Phase-shifting effects of pituitary adenylate cyclase activating polypeptide on hamster wheel-running rhythms. Neuroscience Letters, 2001, 305, 25-28.	1.0	38
56	Sleep deprivation-induced c-fos and junB expression in the rat brain: effects of duration and timing. Behavioural Brain Research, 2001, 120, 75-86.	1.2	50
57	Electrophysiological analysis of suprachiasmatic nucleus projections to the ventrolateral preoptic area in the rat. European Journal of Neuroscience, 2001, 14, 1257-1274.	1.2	58
58	Daily variation in the distribution of glycogen phosphorylase in the suprachiasmatic nucleus of Syrian hamsters. Journal of Comparative Neurology, 2001, 435, 249-258.	0.9	13
59	Acute effects of light on body temperature and activity in Syrian hamsters: influence of circadian phase. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R1369-R1380.	0.9	11
60	Responses of the Circadian System of Rats to Conditioned and Unconditioned Stimuli. Journal of Biological Rhythms, 2000, 15, 277-291.	1.4	12
61	Electrophysiology and pharmacology of projections from the suprachiasmatic nucleus to the ventromedial preoptic area in rat. Neuroscience, 2000, 98, 715-728.	1.1	38
62	Selective regional blockade of junB gene expression in the hamster suprachiasmatic nucleus by a tyrosine kinase inhibitor. Molecular Brain Research, 2000, 77, 29-36.	2.5	2
63	Photic responses of suprachiasmatic area neurons in diurnal degus (Octodon degus) and nocturnal rats (Rattus norvegicus). Brain Research, 1999, 817, 93-103.	1.1	75
64	Circadian and photic regulation of immediate-early gene expression in the hamster suprachiasmatic nucleus. Neuroscience, 1999, 90, 555-571.	1.1	78
65	Differential effects of glutamatergic blockade on circadian and photic regulation of gene expression in the hamster suprachiasmatic nucleus. Molecular Brain Research, 1999, 67, 247-257.	2.5	22
66	Daily Rhythm of Spontaneous Immediate-Early Gene Expression in the Rat Suprachiasmatic Nucleus. Journal of Biological Rhythms, 1999, 14, 275-280.	1.4	50
67	Actions of histamine in the suprachiasmatic nucleus of the Syrian hamster. Brain Research, 1998, 783, 1-9.	1.1	9
68	Daily variation of muscarinic receptors in visual cortex but not suprachiasmatic nucleus of Syrian hamsters. Brain Research, 1998, 797, 143-153.	1.1	21
69	Chronic exposure to melatonin receptor agonists does not alter their effects on suprachiasmatic nucleus neurons. European Journal of Pharmacology, 1998, 342, 29-37.	1.7	32
70	Melatonin does not influence the expression of c-fos in the suprachiasmatic nucleus of rats and hamsters. Molecular Brain Research, 1997, 52, 242-248.	2.5	13
71	Sources of p75-nerve growth factor receptor-like immunoreactivity in the rat suprachiasmatic nucleus. Neuroscience, 1997, 77, 461-472.	1.1	24
72	Effects of Microinjections of Substance P Into the Suprachiasmatic Nucleus Region on Hamster Wheel-Running Rhythms. Brain Research Bulletin, 1997, 42, 451-455.	1.4	33

#	Article	IF	CITATIONS
73	5-HT7 receptors mediate serotonergic effects on light-sensitive suprachiasmatic nucleus neurons. Brain Research, 1997, 755, 246-254.	1.1	131
74	Distribution of ionotropic glutamate receptor subunit immunoreactivity in the suprachiasmatic nucleus and intergeniculate leaflet of the hamster. Brain Research, 1997, 756, 215-224.	1.1	30
75	Spontaneous and light-evoked expression of JunB-like protein in the hamster suprachiasmatic nucleus near subjective dawn. Neuroscience Letters, 1996, 217, 9-12.	1.0	15
76	Activation of hamster suprachiasmatic neurons in vitro via metabotropic glutamate receptors. Neuroscience, 1996, 71, 533-541.	1.1	25
77	Melatonin analogues as agonists and antagonists in the circadian system and other brain areas. European Journal of Pharmacology, 1996, 296, 33-42.	1.7	103
78	Nerve growth factor phase shifts circadian activity rhythms in Syrian hamsters. Neuroscience Letters, 1996, 206, 97-100.	1.0	41
79	Spontaneous circadian and light-induced expression of junB mRNA in the hamster suprachiasmatic nucleus. Brain Research, 1996, 732, 215-222.	1.1	26
80	Expression of fosB mRNA in the hamster suprachiasmatic nucleus is induced at only selected circadian phases. Brain Research, 1996, 739, 132-138.	1.1	17
81	Muscarinic receptors mediate carbachol-induced phase shifts of circadian activity rhythms in Syrian hamsters. Brain Research, 1996, 743, 202-211.	1.1	43
82	Distribution of pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in the hypothalamus and extended amygdala of the rat. Journal of Comparative Neurology, 1996, 376, 278-294.	0.9	113
83	Neonatal monosodium glutamate treatment prevents effects of constant light on circadian temperature rhythms of adult rats. Brain Research, 1995, 675, 135-142.	1.1	37
84	Two Distinct Retinal Projections to the Hamster Suprachiasmatic Nucleus. Journal of Biological Rhythms, 1995, 10, 299-307.	1.4	33
85	Ionophoretically applied substance P activates hamster suprachiasmatic nucleus neurons. Brain Research Bulletin, 1995, 37, 475-479.	1.4	23
86	Physiological mechanisms regulating photic induction of Fos-like protein in hamster suprachiasmatic nucleus. Neuroscience and Biobehavioral Reviews, 1994, 18, 531-536.	2.9	48
87	Effects of serotonergic agonists on firing rates of photically responsive cells in the hamster suprachiasmatic nucleus. Brain Research, 1994, 651, 37-46.	1.1	90
88	Effects of ionophoretically applied bombesin-like peptides on hamster suprachiasmatic nucleus neurons in vitro. European Journal of Pharmacology, 1994, 271, 413-419.	1.7	26
89	Activation of Fos-like immunoreactivity in the medial preoptic area and limbic structures of maternal and social interactions in rats Behavioral Neuroscience, 1994, 108, 724-734.	0.6	123
90	Localization of cholinergic neurons in the forebrain and brainstem that project to the suprachiasmatic nucleus of the hypothalamus in rat. Journal of Comparative Neurology, 1993, 335, 295-307.	0.9	147

#	Article	IF	CITATIONS
91	Electrophysiological Effects of Pressure-Ejected Bombesin-Like Peptides on Hamster Suprachiasmatic Nucleus Neurons in vitro. Journal of Neuroendocrinology, 1993, 5, 575-581.	1.2	25
92	Daily variation in active glycogen phosphorylase patches in the molecular layer of rat dentate gyrus. Brain Research, 1993, 626, 310-317.	1.1	14
93	Regulation of melatonin-sensitivity and firing-rate rhythms of hamster suprachiasmatic nucleus neurons: constant light effects. Brain Research, 1993, 602, 191-199.	1.1	31
94	Regulation of melatonin-sensitivity and firing-rate rhythms of hamster suprachiasmatic nucleus neurons: pinealectomy effects. Brain Research, 1993, 602, 200-204.	1.1	57
95	Effects of serotonin agonists and melatonin on photic responses of hamster intergeniculate leaflet neurons. Brain Research, 1993, 628, 8-16.	1.1	51
96	Open Forum: Human Phase-Resetting Sensitivity to Light. Journal of Biological Rhythms, 1993, 8, 339-339.	1.4	2
97	Stimulation of the hamster ventral lateral geniculate nucleus induces Fos-like immunoreactivity in suprachiasmatic nucleus cells. Neuroscience Letters, 1992, 148, 185-189.	1.0	15
98	Circadian variation in photic regulation of immediate-early gene mRNAs in rat suprachiasmatic nucleus cells. Molecular Brain Research, 1992, 14, 124-130.	2.5	128
99	NMDA and non-NMDA receptor antagonists inhibit photic induction of fos protein in the hamster suprachiasmatic nucleus. Brain Research Bulletin, 1992, 28, 831-835.	1.4	152
100	The relation between light-induced discharge in the suprachiasmatic nucleus and phase shifts of hamster circadian rhythms. Brain Research, 1992, 598, 257-263.	1.1	76
101	Temporal context effects in pigeons' memory for event duration. Learning and Motivation, 1992, 23, 117-144.	0.6	50
102	Photic induction of Fos protein in the suprachiasmatic nucleus is inhibited by the NMDA receptor antagonist MK-801. Neuroscience Letters, 1991, 127, 9-12.	1.0	155
103	Luminance coding properties of intergeniculate leaflet neurons in the golden hamster and the effects of chronic clorgyline. Brain Research, 1991, 554, 95-104.	1.1	37
104	Neurotransmitters in the Mammalian Circadian System. Annual Review of Neuroscience, 1990, 13, 387-401.	5.0	122
105	Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science, 1990, 248, 1237-1240.	6.0	542
106	Lesions dorsal to the suprachiasmatic nuclei abolish split activity rhythms of hamsters. Brain Research Bulletin, 1990, 24, 593-597.	1.4	10
107	Neurophysiological responses to melatonin in the SCN of short-day sensitive and refractory hamsters. Brain Research, 1990, 533, 15-19.	1.1	49
108	The Mammalian Circadian System: Models and Physiology. Journal of Biological Rhythms, 1989, 4, 9-22.	1.4	99

#	Article	IF	CITATIONS
109	Photic responses of geniculo-hypothalamic tract neurons in the Syrian hamster. Visual Neuroscience, 1989, 2, 367-375.	0.5	80
110	Pigeons' memory for event duration: Intertrial interval and delay effects. Learning and Behavior, 1989, 17, 147-156.	3.4	70
111	Photically responsive neurons in the hypothalamus of a diurnal ground squirrel. Brain Research, 1989, 501, 315-323.	1.1	66
112	Hamster circadian rhythms are phase-shifted by electrical stimulation of the geniculo-hypothalamic tract. Brain Research, 1989, 493, 283-291.	1.1	164
113	Photic sensitivity of geniculate neurons that project to the suprachiasmatic nuclei or the contralateral geniculate. Brain Research, 1989, 504, 161-164.	1.1	102
114	The electrophysiological effects of neuropeptide-Y (NPY) and arginine-vasopressin (AVP) on rat and hamster suprachiasmatic neurones. Regulatory Peptides, 1989, 26, 81.	1.9	0
115	Daily hoarding opportunity entrains the pacemaker for hamster activity rhythms. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1988, 164, 165-171.	0.7	49
116	Interactive Effects of Stress and Photoperiod History on Gonadal Condition in Male Syrian Hamsters. Journal of Pineal Research, 1988, 5, 41-50.	3.4	6
117	Ablation of the geniculo-hypothalamic tract alters circadian activity rhythms of hamsters housed under constant light. Physiology and Behavior, 1988, 42, 183-189.	1.0	97
118	Seasonal Affective Disorder: An Introduction. Journal of Biological Rhythms, 1988, 3, 97-99.	1.4	3
119	Food-Anticipatory Circadian Rhythms in Rats with Paraventricular and Lateral Hypothalamic Ablations. Journal of Biological Rhythms, 1988, 3, 277-291.	1.4	86
120	Double-labeling of neuropeptide Y-immunoreactive neurons which project from the geniculate to the suprachiasmatic nuclei. Brain Research, 1987, 410, 275-282.	1.1	169
121	Palatable daily meals entrain anticipatory activity rhythms in free-feeding rats: Dependence on meal size and nutrient content. Physiology and Behavior, 1987, 41, 219-226.	1.0	131
122	Electrophysiological responses of hamster suprachiasmatic neurones to neuropeptide Y in the hypothalamic slice preparation. Neuroscience Letters, 1987, 80, 173-179.	1.0	60
123	Carbachol phase shifts circadian activity rhythms in ovariectomized rats. Neuroscience Letters, 1986, 72, 357-362.	1.0	20
124	Luminance coding in a circadian pacemaker: the suprachiasmatic nucleus of the rat and the hamster. Brain Research, 1986, 382, 109-118.	1.1	202
125	Lesions of the Thalamic Intergeniculate Leaflet Alter Hamster Circadian Rhythms. Journal of Biological Rhythms, 1986, 1, 309-325.	1.4	215
126	Horizontal knife cuts in the suprachiasmatic area prevent hamster gonadal responses to photoperiod. Neuroscience Letters, 1985, 61, 261-266.	1.0	22

#	Article	IF	CITATIONS
127	Neuropeptide Y immunoreactivity in the hamster geniculo-suprachiasmatic tract. Brain Research Bulletin, 1985, 15, 465-472.	1.4	227
128	Periventricular and Suprachiasmatic Lesion Effects on Photoperiodic Responses of the Hamster Hypophyseal-Gonadal Axis. Biology of Reproduction, 1984, 30, 1073-1081.	1.2	22
129	Suprachiasmatic stimulation phase shifts rodent circadian rhythms. Science, 1982, 215, 1407-1409.	6.0	123
130	Circadian phase response curves for dark pulses in the hamster. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1982, 146, 411-417.	0.7	158
131	PATHWAYS FOR PHOTIC ENTRAINMENT OF MAMMALIAN CIRCADIAN RHYTHMS*. Photochemistry and Photobiology, 1981, 34, 267-273.	1.3	96
132	Vertebrate Behavioral Rhythms. , 1981, , 183-213.		28
133	Suprachiasmatic Lesions Prevent an Antigonadal Effect of Melatonin. Biology of Reproduction, 1980, 22, 148-154.	1.2	39
134	Neural regulation of circadian rhythms Physiological Reviews, 1979, 59, 449-526.	13.1	1,392
135	An evaluation of homeostasis of circadian periodicity in the golden hamster. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1978, 123, 265-269.	0.7	9
136	Circadian organization and neural mediation of hamster reproductive rhythms. Psychoneuroendocrinology, 1977, 2, 73-98.	1.3	92
137	The role of the suprachiasmatic nuclei in the generation of circadian rhythms in the golden hamster,Mesocricetus auratus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1977, 118, 145-164.	0.7	251
138	Involvement of the primary optic tracts in mediation of light effects on hamster orcadian rhythms. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1977, 118, 165-172.	0.7	52
139	Testicular Responses to Photoperiod Are Blocked by Lesions of the Suprachiasmatic Nuclei in Golden Hamsters1. Biology of Reproduction, 1976, 15, 366-374.	1.2	145
140	Fluid intake of rats in constant light and during feeding restricted to the light or dark portion of the illumination cycle. Physiology and Behavior, 1974, 13, 91-100.	1.0	20
141	The termination of reinforcing intracranial stimulation: An ecological approach. Physiology and Behavior, 1971, 7, 215-220.	1.0	8