Michael J A Hore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8412198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly branched and loop-rich gels via formation of metal–organic cages linked by polymers. Nature Chemistry, 2016, 8, 33-41.	13.6	234
2	Poly[<i>n</i>]catenanes: Synthesis of molecular interlocked chains. Science, 2017, 358, 1434-1439.	12.6	196
3	Nanorod Self-Assembly for Tuning Optical Absorption. ACS Nano, 2010, 4, 6941-6949.	14.6	124
4	Functional Polymer Nanocomposites Enhanced by Nanorods. Macromolecules, 2014, 47, 875-887.	4.8	118
5	Nanorod Assemblies in Polymer Films and Their Dispersion-Dependent Optical Properties. ACS Macro Letters, 2012, 1, 115-121.	4.8	88
6	Co-Nonsolvency of Poly(<i>n</i> -isopropylacrylamide) in Deuterated Water/Ethanol Mixtures. Macromolecules, 2013, 46, 7894-7901.	4.8	88
7	Polymers on nanoparticles: structure & dynamics. Soft Matter, 2019, 15, 1120-1134.	2.7	87
8	Dispersion of Polymer-Grafted Nanorods in Homopolymer Films: Theory and Experiment. Macromolecules, 2013, 46, 2856-2869.	4.8	85
9	Miscanthus Giganteus: A commercially viable sustainable source of cellulose nanocrystals. Carbohydrate Polymers, 2017, 155, 230-241.	10.2	80
10	Gold Nanorods Dispersed in Homopolymer Films: Optical Properties Controlled by Self-Assembly and Percolation of Nanorods. ACS Nano, 2012, 6, 1578-1588.	14.6	72
11	Polymer Structure and Conformation Alter the Antigenicity of Virus-like Particle–Polymer Conjugates. Journal of the American Chemical Society, 2017, 139, 3312-3315.	13.7	70
12	Universal Scaling of Polymer Diffusion in Nanocomposites. ACS Macro Letters, 2013, 2, 485-490.	4.8	67
13	Semibatch monomer addition as a general method to tune and enhance the mechanics of polymer networks via loop-defect control. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4875-4880.	7.1	67
14	Direct Measurements of Polymer Brush Conformation Using Small-Angle Neutron Scattering (SANS) from Highly Grafted Iron Oxide Nanoparticles in Homopolymer Melts. Macromolecules, 2013, 46, 9341-9348.	4.8	66
15	Biomimetic Reversible Heat-Stiffening Polymer Nanocomposites. ACS Central Science, 2017, 3, 886-894.	11.3	58
16	Nanospheres in phase-separating multicomponent fluids: A three-dimensional dissipative particle dynamics simulation. Journal of Chemical Physics, 2004, 121, 10641-10647.	3.0	56
17	Prospects of nanorods as an emulsifying agent of immiscible blends. Journal of Chemical Physics, 2008, 128, 054901.	3.0	52
18	A jamming morphology map of polymer blend nanocomposite films. Soft Matter, 2011, 7, 7262.	2.7	52

MICHAEL J A HORE

#	Article	IF	CITATIONS
19	Structure–property relationships of polymer-grafted nanospheres for designing advanced nanocomposites. Nano Structures Nano Objects, 2018, 16, 428-440.	3.5	49
20	Local Structure and Relaxation Dynamics in the Brush of Polymer-Grafted Silica Nanoparticles. ACS Macro Letters, 2018, 7, 699-704.	4.8	49
21	Polymer Structure Dependent Hierarchy in PolyMOC Gels. Macromolecules, 2016, 49, 6896-6902.	4.8	48
22	Microphase separation induced by interfacial segregation of isotropic, spherical nanoparticles. Journal of Chemical Physics, 2007, 126, 244903.	3.0	47
23	Using Miscible Polymer Blends To Control Depletion–Attraction Forces between Au Nanorods in Nanocomposite Films. Macromolecules, 2012, 45, 6078-6086.	4.8	47
24	Gold Nanorod Linking to Control Plasmonic Properties in Solution and Polymer Nanocomposites. Langmuir, 2014, 30, 1906-1914.	3.5	47
25	Probing the Structure, Composition, and Spatial Distribution of Ligands on Gold Nanorods. Nano Letters, 2015, 15, 5730-5738.	9.1	46
26	Nanoparticle Brush Architecture Controls Polymer Diffusion in Nanocomposites. Macromolecules, 2014, 47, 2404-2410.	4.8	44
27	Bottlebrush polymers with flexible enantiomeric side chains display differential biological properties. Nature Chemistry, 2022, 14, 85-93.	13.6	43
28	Grafted polymer chains suppress nanoparticle diffusion in athermal polymer melts. Journal of Chemical Physics, 2017, 146, 203332.	3.0	36
29	Polymer-mediated nanorod self-assembly predicted by dissipative particle dynamics simulations. Soft Matter, 2015, 11, 6881-6892.	2.7	35
30	Scaling Exponent and Effective Interactions in Linear and Cyclic Polymer Solutions: Theory, Simulations, and Experiments. Macromolecules, 2019, 52, 4579-4589.	4.8	35
31	Interaction and Conformation of Aqueous Poly(N-isopropylacrylamide) (PNIPAM) Star Polymers below the LCST. Macromolecules, 2017, 50, 2145-2154.	4.8	33
32	Characterizing polymer structure with small-angle neutron scattering: A Tutorial. Journal of Applied Physics, 2021, 129, .	2.5	33
33	Dissipative particle dynamics simulation of the interplay between spinodal decomposition and wetting in thin film binary fluids. Journal of Chemical Physics, 2010, 132, 024908.	3.0	31
34	Chain terminal group leads to distinct thermoresponsive behaviors ofÂlinear PNIPAM and polymer analogs. Polymer, 2018, 145, 137-147.	3.8	31
35	Persistent Multiexcitons from Polymers with Pendent Pentacenes. Journal of the American Chemical Society, 2019, 141, 9564-9569.	13.7	31
36	Gold nanorod length controls dispersion, local ordering, and optical absorption in polymer nanocomposite films. Soft Matter, 2014, 10, 3404-3413.	2.7	28

MICHAEL J A HORE

#	Article	IF	CITATIONS
37	Rapid Large-Scale Assembly and Pattern Transfer of One-Dimensional Gold Nanorod Superstructures. ACS Applied Materials & Interfaces, 2017, 9, 25513-25521.	8.0	27
38	Strategies for dispersing, assembling, and orienting nanorods in polymers. Current Opinion in Chemical Engineering, 2013, 2, 95-102.	7.8	24
39	Polymer-Grafted Nanoparticles. Journal of Applied Physics, 2020, 128, .	2.5	21
40	Stereochemical Control Yields Mucin Mimetic Polymers. ACS Central Science, 2021, 7, 624-630.	11.3	21
41	Structural characterization of protein–polymer conjugates for biomedical applications with small-angle scattering. Current Opinion in Colloid and Interface Science, 2019, 42, 157-168.	7.4	13
42	Simulation of the Coronal Dynamics of Polymer-Grafted Nanoparticles. ACS Polymers Au, 2022, 2, 157-168.	4.1	9
43	Dynamic Interfacial Trapping of Janus Nanorod Aggregates. Langmuir, 2020, 36, 4184-4193.	3.5	8
44	Translocation of soft phytoglycogen nanoparticles through solid-state nanochannels. Journal of Materials Chemistry B, 2019, 7, 6428-6437.	5.8	7
45	Isomeric and structural effects in polymer cononsolvent systems. Polymer, 2019, 170, 190-197.	3.8	4
46	A correspondence between the Flory–Rehner theory for microgels and the Daoud–Cotton model for polymer-grafted nanoparticles. Journal of Applied Physics, 2020, 128, .	2.5	3
47	Effect of Nanoscale rods on the Kinetics of Phase-Separating Multi-Component Fluids. Materials Research Society Symposia Proceedings, 2004, 856, BB7.7.1.	0.1	1
48	Predicting the Optical and Electrical Properties of Polymer Nanocomposites. Springer Series in Materials Science, 2021, , 259-280.	0.6	0