List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8411858/publications.pdf Version: 2024-02-01

LINC-SHU WAN

#	Article	IF	CITATIONS
1	Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2021. Chinese Chemical Letters, 2023, 34, 107592.	9.0	35
2	End-functionalized polymers by controlled/living radical polymerizations: synthesis and applications. Polymer Chemistry, 2022, 13, 300-358.	3.9	24
3	Ag Nanoparticle-Enabled Electroless Deposition of Ni on Mine-Formaldehyde Sponges for Oil–Water Separation, Piezoresistive Sensing, and Electromagnetic Shielding. ACS Applied Nano Materials, 2022, 5, 4204-4213.	5.0	7
4	Effect of polar groups of polystyrenes on the <scp>selfâ€assembly</scp> of breath figure arrays. Journal of Polymer Science, 2022, 60, 2371-2382.	3.8	4
5	Formation of Metal–Phytic Acid Surface Coatings via Oxidation-Mediated Coordination Assembly. ACS Applied Polymer Materials, 2022, 4, 546-555.	4.4	18
6	Transparent and fluorescent breath figure arrays prepared from end-functionalized copolymers. Polymer, 2022, 254, 125079.	3.8	2
7	Engineered Coatings via the Assembly of Aminoâ€Quinone Networks. Angewandte Chemie - International Edition, 2021, 60, 2346-2354.	13.8	34
8	Engineered Coatings via the Assembly of Aminoâ€Quinone Networks. Angewandte Chemie, 2021, 133, 2376-2384.	2.0	5
9	Surface Coatings via the Assembly of Metal–Monophenolic Networks. Langmuir, 2021, 37, 3721-3730.	3.5	12
10	Rapid formation of metalâ^'monophenolic networks on polymer membranes for oil/water separation and dye adsorption. Chinese Chemical Letters, 2021, 32, 3852-3856.	9.0	10
11	Less-Ordered Hydration Shell around Poly(<i>N</i> , <i>N</i> -diethylacrylamide) Is Insensitive to the Clouding Transition. Journal of Physical Chemistry B, 2021, 125, 12104-12109.	2.6	2
12	Surface Metallization of Porous Polymer Materials for Multifunctional Applications. Langmuir, 2020, 36, 1454-1461.	3.5	9
13	Janus polymer membranes prepared by single-side polydopamine deposition for dye adsorption and fine bubble aeration. Materials Chemistry Frontiers, 2019, 3, 2102-2109.	5.9	16
14	Surface modification of self-assembled isoporous polymer membranes for pressure-dependent high-resolution separation. Polymer Chemistry, 2019, 10, 3201-3209.	3.9	13
15	Surface Deposition of Juglone/Fe ^{III} on Microporous Membranes for Oil/Water Separation and Dye Adsorption. Langmuir, 2019, 35, 3643-3650.	3.5	35
16	Grain Boundaries of Self-Assembled Porous Polymer Films for Unclonable Anti-Counterfeiting. ACS Applied Polymer Materials, 2019, 1, 47-53.	4.4	24
17	Self-Assembly of Patterned Porous Films from Cyclic Polystyrenes via the Breath Figure Method. Journal of Physical Chemistry C, 2018, 122, 3926-3933.	3.1	21
18	Vertically Oriented Microporous Membranes Prepared by Bidirectional Freezing. Chinese Journal of Polymer Science (English Edition), 2018, 36, 880-887.	3.8	12

#	Article	IF	CITATIONS
19	Cross-linked perforated honeycomb membranes with improved mechanical and chemical properties. Materials Chemistry Frontiers, 2017, 1, 1073-1078.	5.9	11
20	Effects of molecular weight distribution on the self-assembly of end-functionalized polystyrenes. Polymer Chemistry, 2017, 8, 4290-4298.	3.9	27
21	Multiple Liquid Manipulations on Patterned Surfaces with Tunable Adhesive Property. Advanced Materials Interfaces, 2017, 4, 1700490.	3.7	14
22	CuSO ₄ /H ₂ O ₂ â€induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability. Angewandte Chemie, 2016, 128, 3106-3109.	2.0	117
23	Conformal and non-conformal surface modification of honeycomb-patterned porous films via tunable Cassie–Wenzel transition. RSC Advances, 2016, 6, 52131-52136.	3.6	1
24	Poly(vinylidene fluoride) separators with dual-asymmetric structure for high-performance lithium ion batteries. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1423-1435.	3.8	25
25	Effects of polyethyleneimine molecular weight and proportion on the membrane hydrophilization by codepositing with dopamine. Journal of Applied Polymer Science, 2016, 133, .	2.6	95
26	Janus Membranes with Asymmetric Wettability for Fine Bubble Aeration. Advanced Materials Interfaces, 2016, 3, 1500774.	3.7	119
27	CuSO ₄ /H ₂ O ₂ â€Induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability. Angewandte Chemie - International Edition, 2016, 55, 3054-3057.	13.8	403
28	Co-deposition of tannic acid and diethlyenetriamine for surface hydrophilization of hydrophobic polymer membranes. Applied Surface Science, 2016, 360, 291-297.	6.1	74
29	Polypropylene microfiltration membranes modified with TiO2 nanoparticles for surface wettability and antifouling property. Journal of Membrane Science, 2016, 500, 8-15.	8.2	116
30	Fabrication of Transferable Perforated Isoporous Membranes on Versatile Solid Substrates via the Breath Figure Method. Advanced Materials Interfaces, 2015, 2, 1500285.	3.7	16
31	Underwater superoleophobic meshes fabricated by poly(sulfobetaine)/polydopamine co-deposition. RSC Advances, 2015, 5, 47592-47598.	3.6	35
32	Co-deposition of catechol/polyethyleneimine on porous membranes for efficient decolorization of dye water. Journal of Materials Chemistry A, 2015, 3, 14438-14444.	10.3	150
33	Highly Stable, Protein-Resistant Surfaces via the Layer-by-Layer Assembly of Poly(sulfobetaine) Tj ETQq1 1 0.784	314 ဌဋBT ,	Overlock 10
34	Cobalt-porphyrin/dansyl piperazine complex coated filter paper for "turn on―fluorescence sensing of ammonia gas. RSC Advances, 2015, 5, 99361-99363.	3.6	10
35	Mussel-Inspired Modification of Honeycomb Structured Films for Superhydrophobic Surfaces with Tunable Water Adhesion. Journal of Physical Chemistry C, 2015, 119, 3667-3673.	3.1	37
36	Systematic Investigation on the Formation of Honeycomb-Patterned Porous Films from Amphiphilic Block Copolymers. Journal of Physical Chemistry C, 2015, 119, 1971-1979.	3.1	41

#	Article	IF	CITATIONS
37	Polydopamine-Coated Porous Substrates as a Platform for Mineralized β-FeOOH Nanorods with Photocatalysis under Sunlight. ACS Applied Materials & Interfaces, 2015, 7, 11567-11574.	8.0	150
38	Porphyrinated polyimide honeycomb films with high thermal stability for HCl gas sensing. RSC Advances, 2015, 5, 30472-30477.	3.6	34
39	Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking. Journal of Membrane Science, 2015, 476, 50-58.	8.2	294
40	Fabrication of Perforated Isoporous Membranes via a Transfer-Free Strategy: Enabling High-Resolution Separation of Cells. ACS Applied Materials & Interfaces, 2014, 6, 22400-22407.	8.0	46
41	Poly(vinylidene fluoride) ultrafiltration membranes containing hybrid silica nanoparticles: Preparation, characterization and performance. Polymer, 2014, 55, 1333-1340.	3.8	45
42	In-Situ Immobilization of Silver Nanoparticles on Self-Assembled Honeycomb-Patterned Films Enables Surface-Enhanced Raman Scattering (SERS) Substrates. Journal of Physical Chemistry C, 2014, 118, 11478-11484.	3.1	51
43	Thermally induced phase separation followed by in situ sol–gel process: A novel method for PVDF/SiO2 hybrid membranes. Journal of Membrane Science, 2014, 465, 56-67.	8.2	75
44	Synthesis of core cross-linked star polystyrene with functional end groups and self-assemblies templated by breath figures. Polymer Chemistry, 2014, 5, 5175-5182.	3.9	17
45	Synthesis of polystyrene with cyclic, ionized and neutralized end groups and the self-assemblies templated by breath figures. Polymer Chemistry, 2014, 5, 3666-3672.	3.9	29
46	Multiple interfaces in self-assembled breath figures. Chemical Communications, 2014, 50, 4024-4039.	4.1	149
47	Nonlithographic Fabrication of Nanostructured Micropatterns via Breath Figures and Solution Growth. Journal of Physical Chemistry C, 2014, 118, 4403-4409.	3.1	20
48	Polystyrene with hydrophobic end groups: synthesis, kinetics, interfacial activity, and self-assemblies templated by breath figures. Polymer Chemistry, 2014, 5, 4311-4320.	3.9	26
49	Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. Journal of Materials Chemistry A, 2014, 2, 10225-10230.	10.3	620
50	Polystyrenes with Hydrophilic End Groups: Synthesis, Characterization, and Effects on the Self-Assembly of Breath Figure Arrays. Journal of Physical Chemistry B, 2014, 118, 845-854.	2.6	53
51	Polar polymer membranes via thermally induced phase separation using a universal crystallizable diluent. Journal of Membrane Science, 2013, 446, 482-491.	8.2	67
52	Centimeter-scale giant spherulites in mixtures of polar polymers and crystallizable diluents: Morphology, structure, formation and application. RSC Advances, 2013, 3, 17105.	3.6	13
53	Crystallizable diluent-templated polyacrylonitrile foams for macroporous carbon monoliths. Polymer, 2013, 54, 284-291.	3.8	20
54	Honeycomb Porous Films Prepared from Porphyrin-Cored Star Polymers: Submicrometer Pores Induced by Transition of Monolayer into Multilayer Structures. Journal of Physical Chemistry C, 2013, 117, 6185-6194.	3.1	40

#	Article	IF	CITATIONS
55	Polyacrylonitrile membranes via thermally induced phase separation: Effects of polyethylene glycol with different molecular weights. Journal of Membrane Science, 2013, 437, 227-236.	8.2	51
56	Thermo-responsive polyacrylonitrile membranes prepared with poly(acrylonitrile-g-isopropylacrylamide) as an additive. Journal of Membrane Science, 2013, 432, 42-49.	8.2	30
57	Polydopamine gradients by oxygen diffusion controlled autoxidation. Chemical Communications, 2013, 49, 10522.	4.1	96
58	Thermally induced phase separation of poly(vinylidene fluoride)/diluent systems: Optical microscope and infrared spectroscopy studies. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1438-1447.	2.1	34
59	Surface functionalization of cross-linked polystyrene microspheres via thiol–ene "click―reaction and assembly in honeycomb films for lectin recognition. Journal of Materials Research, 2013, 28, 642-650.	2.6	15
60	Polymeric Membrane Science and Technology. International Journal of Polymer Science, 2013, 2013, 1-2.	2.7	0
61	Patterned biocatalytic films via one-step self-assembly. Chemical Communications, 2012, 48, 4417.	4.1	50
62	Bio-inspired CaCO3 coating for superhydrophilic hybrid membranes with high water permeability. Journal of Materials Chemistry, 2012, 22, 22727.	6.7	68
63	Pore Shape of Honeycomb-Patterned Films: Modulation and Interfacial Behavior. Journal of Physical Chemistry B, 2012, 116, 40-47.	2.6	40
64	Ordered Microporous Membranes Templated by Breath Figures for Size-Selective Separation. Journal of the American Chemical Society, 2012, 134, 95-98.	13.7	202
65	Interactions between Polyacrylonitrile and Solvents: Density Functional Theory Study and Two-Dimensional Infrared Correlation Analysis. Journal of Physical Chemistry B, 2012, 116, 8321-8330.	2.6	97
66	Structure and performance of polyacrylonitrile membranes prepared via thermally induced phase separation. Journal of Membrane Science, 2012, 409-410, 355-364.	8.2	103
67	Macroporous, protein-containing films cast from water-in-oil emulsions featuring a block-copolymer. Soft Matter, 2011, 7, 4221.	2.7	15
68	Selective Adsorption of Isopropyl Alcohol Aqueous Solution on Polypropylene Surfaces: A Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2011, 115, 22415-22421.	3.1	13
69	Molecular Simulation on the Interactions of Water with Polypropylene Surfaces. Journal of Physical Chemistry C, 2011, 115, 10702-10708.	3.1	22
70	Honeycomb-Patterned Film Segregated with Phenylboronic Acid for Glucose Sensing. Langmuir, 2011, 27, 12597-12605.	3.5	100
71	Membrane surface with antibacterial property by grafting polycation. Journal of Membrane Science, 2011, 376, 132-141.	8.2	86
72	Selective layer-by-layer self-assembly on patterned porous films modulated by Cassie–Wenzel transition. Physical Chemistry Chemical Physics, 2011, 13, 4881.	2.8	42

#	Article	IF	CITATIONS
73	Surface Engineering of Microporous Polypropylene Membrane for Antifouling: A Mini-Review. Journal of Adhesion Science and Technology, 2011, 25, 245-260.	2.6	29
74	Controlled synthesis of linear and comb-like glycopolymers for preparation of honeycomb-patterned films. Polymer, 2010, 51, 2168-2176.	3.8	66
75	Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling. Journal of Membrane Science, 2010, 362, 255-264.	8.2	261
76	Tunable Assembly of Nanoparticles on Patterned Porous Film. Langmuir, 2010, 26, 15982-15988.	3.5	62
77	Facilitated and Site-Specific Assembly of Functional Polystyrene Microspheres on Patterned Porous Films. ACS Applied Materials & Interfaces, 2010, 2, 3759-3765.	8.0	42
78	Controllable Construction of Carbohydrate Microarrays by Site-Directed Grafting on Self-Organized Porous Films. Langmuir, 2010, 26, 8946-8952.	3.5	76
79	Enzyme immobilization on electrospun polymer nanofibers: An overview. Journal of Molecular Catalysis B: Enzymatic, 2009, 56, 189-195.	1.8	469
80	Linear and combâ€like acrylonitrile/ <i>N</i> â€isopropylacrylamide copolymers synthesized by the combination of RAFT polymerization and ATRP. Journal of Polymer Science Part A, 2009, 47, 92-102.	2.3	23
81	Surface hydrophilization for polypropylene microporous membranes: A facile interfacial crosslinking approach. Journal of Membrane Science, 2009, 326, 372-381.	8.2	66
82	Surface hydrophilization of microporous polypropylene membrane by the interfacial crosslinking of polyethylenimine. Journal of Membrane Science, 2009, 337, 70-80.	8.2	78
83	Surface engineering of macroporous polypropylene membranes. Soft Matter, 2009, 5, 1775.	2.7	72
84	Immobilization of catalase on electrospun nanofibrous membranes modified with bovine serum albumin or collagen: Coupling site-dependent activity and protein-dependent stability. Soft Matter, 2009, 5, 4161.	2.7	20
85	Electrospun nanofibrous membranes filled with carbon nanotubes for redox enzyme immobilization. Enzyme and Microbial Technology, 2008, 42, 332-339.	3.2	72
86	Fabrication of glycosylated surfaces on microporous polypropylene membranes for protein recognition and adsorption. Journal of Materials Chemistry, 2008, 18, 4663.	6.7	20
87	Novel Porphyrinated Polyimide Nanofibers by Electrospinning. Journal of Physical Chemistry C, 2008, 112, 10609-10615.	3.1	35
88	INTERACTION BETWEEN THE SURFACE GLYCOSYLATED POLYPROPYLENE MAMBRANE AND LECTIN. Chinese Journal of Polymer Science (English Edition), 2008, 26, 363.	3.8	6
89	Diffusion and Structure of Water in Polymers ContainingN-Vinyl-2-pyrrolidone. Journal of Physical Chemistry B, 2007, 111, 922-928.	2.6	54
90	Catalase Immobilization on Electrospun Nanofibers:  Effects of Porphyrin Pendants and Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 14091-14097.	3.1	52

#	Article	IF	CITATIONS
91	Construction of Glycosylated Surfaces for Poly(propylene) Beads with a Photoinduced Grafting/Chemical Reaction Sequence. Macromolecular Rapid Communications, 2007, 28, 2325-2331.	3.9	13
92	Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview. Journal of Membrane Science, 2007, 304, 8-23.	8.2	186
93	Cytocompatibility of poly(acrylonitrile-co-N-vinyl-2-pyrrolidone) membranes with human endothelial cells and macrophages. Acta Biomaterialia, 2007, 3, 183-190.	8.3	17
94	Fibrous Membranes Electrospinning from Acrylonitrile-Based Polymers: Specific Absorption Behaviors and States of Water. Macromolecular Bioscience, 2006, 6, 364-372.	4.1	16
95	Nanofibrous Membranes Containing Carbon Nanotubes: Electrospun for Redox Enzyme Immobilization. Macromolecular Rapid Communications, 2006, 27, 516-521.	3.9	68
96	Electrospun Nanofibers Modified with Phospholipid Moieties for Enzyme Immobilization. Macromolecular Rapid Communications, 2006, 27, 1341-1345.	3.9	74
97	Porphyrinated Nanofibers via Copolymerization and Electrospinning. Macromolecular Rapid Communications, 2006, 27, 1533-1538.	3.9	39
98	Copolymerization of acrylonitrile with N-vinyl-2-pyrrolidone to improve the hemocompatibility of polyacrylonitrile. Polymer, 2005, 46, 7715-7723.	3.8	62
99	Surface modification of polypropylene microfiltration membranes by the immobilization of poly(N-vinyl-2-pyrrolidone): a facile plasma approach. Journal of Membrane Science, 2005, 249, 21-31.	8.2	120
100	Novel Acrylonitrile-Based Copolymers Containing Phospholipid Moieties: Synthesis and Characterization. Macromolecular Bioscience, 2005, 5, 322-330.	4.1	27
101	Tethering poly(ethylene glycol)s to improve the surface biocompatibility of poly(acrylonitrile-co-maleic acid) asymmetric membranes. Biomaterials, 2005, 26, 589-598.	11.4	83
102	Surface Modification of Polyacrylonitrile-Based Membranes by Chemical Reactions To Generate Phospholipid Moieties. Langmuir, 2005, 21, 2941-2947.	3.5	60