Yaobin Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8411744/publications.pdf

Version: 2024-02-01

471509 677142 2,241 23 17 22 h-index citations g-index papers 23 23 23 3021 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy. ACS Nano, 2017, 11, 5646-5659.	14.6	373
2	Nanofiber Yarn/Hydrogel Core–Shell Scaffolds Mimicking Native Skeletal Muscle Tissue for Guiding 3D Myoblast Alignment, Elongation, and Differentiation. ACS Nano, 2015, 9, 9167-9179.	14.6	317
3	Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. Biomaterials, 2016, 87, 18-31.	11.4	281
4	Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators. Acta Biomaterialia, 2017, 59, 68-81.	8.3	255
5	Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly. Biomaterials, 2016, 104, 18-31.	11.4	162
6	Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation. Acta Biomaterialia, 2019, 96, 175-187.	8.3	148
7	Micropatterned, electroactive, and biodegradable poly(glycerol sebacate)-aniline trimer elastomer for cardiac tissue engineering. Chemical Engineering Journal, 2019, 366, 208-222.	12.7	95
8	Injectable biodegradable hydrogels and microgels based on methacrylated poly(ethylene) Tj ETQq0 0 0 rgBT /Ove encapsulation. Journal of Materials Chemistry B, 2014, 2, 3674.	erlock 10 T 5.8	rf 50 467 Td (82
9	Conductive micropatterned polyurethane films as tissue engineering scaffolds for Schwann cells and PC12 cells. Journal of Colloid and Interface Science, 2018, 518, 252-262.	9.4	78
10	3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation. Journal of Colloid and Interface Science, 2020, 574, 162-173.	9.4	72
11	Injectable Electroactive Hydrogels Formed via Host–Guest Interactions. ACS Macro Letters, 2014, 3, 1145-1150.	4.8	71
12	A highly bioactive and biodegradable poly(glycerol sebacate)–silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration. Journal of Materials Chemistry B, 2015, 3, 3222-3233.	5.8	62
13	3D bioprinting in cardiac tissue engineering. Theranostics, 2021, 11, 7948-7969.	10.0	56
14	An Injectable Asymmetricâ€Adhesive Hydrogel as a GATA6 ⁺ Cavity Macrophage Trap to Prevent the Formation of Postoperative Adhesions after Minimally Invasive Surgery. Advanced Functional Materials, 2022, 32, 2110066.	14.9	42
15	Loss of KMT2D induces prostate cancer ROS-mediated DNA damage by suppressing the enhancer activity and DNA binding of antioxidant transcription factor FOXO3. Epigenetics, 2019, 14, 1194-1208.	2.7	36
16	Injectable remote magnetic nanofiber/hydrogel multiscale scaffold for functional anisotropic skeletal muscle regeneration. Biomaterials, 2022, 285, 121537.	11.4	34
17	Injectable microfluidic hydrogel microspheres based on chitosan and poly(ethylene glycol) diacrylate (PEGDA) as chondrocyte carriers. RSC Advances, 2020, 10, 39662-39672.	3.6	20
18	Biocompatible degradable injectable hydrogels from methacrylated poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 1 RSC Advances, 2015, 5, 66965-66974.	0 Tf 50 67 3.6	7 Td (glycol)-c 19

RSC Advances, 2015, 5, 66965-66974.

YAOBIN Wu

#	Article	IF	CITATION
19	Fabrication of $\widehat{\text{Tl}^2}$ 4-Exosome-releasing artificial stem cells for myocardial infarction therapy by improving coronary collateralization. Bioactive Materials, 2022, 14, 416-429.	15.6	16
20	3D-printed high-density polyethylene scaffolds with bioactive and antibacterial layer-by-layer modification for auricle reconstruction. Materials Today Bio, 2022, 16, 100361.	5 . 5	16
21	Human Skeletal Muscle Cells on Engineered 3D Platform Express Key Growth and Developmental Proteins. ACS Biomaterials Science and Engineering, 2019, 5, 970-976.	5.2	3
22	Shape Optimization of Costal Cartilage Framework Fabrication Based on Finite Element Analysis for Reducing Incidence of Auricular Reconstruction Complications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 766599.	4.1	3
23	Human Skeletal Muscleâ€onâ€aâ€Chip. FASEB Journal, 2019, 33, lb645.	0.5	0