
Alfonso GarvÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8411290/publications.pdf Version: 2024-02-01

ALEONSO CADVÃN

#	Article	IF	CITATIONS
1	Ultraviolet processing of liquid food: A review. Food Research International, 2011, 44, 1580-1588.	6.2	89
2	Ascorbic acid stability in fruit juices during thermosonication. Ultrasonics Sonochemistry, 2017, 37, 375-381.	8.2	77
3	The Production of Butyl Acetate and Methanol via Reactive and Extractive Distillation. I. Chemical Equilibrium, Kinetics, and Mass-Transfer Issues. Industrial & Engineering Chemistry Research, 2002, 41, 6663-6669.	3.7	63
4	Rheological behaviour of sloe (Prunus spinosa) fruit juices. Journal of Food Engineering, 1996, 27, 423-430.	5.2	47
5	Peroxidase (POD) and polyphenol oxidase (PPO) photo-inactivation in a coconut water model solution using ultraviolet (UV). Food Research International, 2015, 74, 151-159.	6.2	41
6	Ultraviolet processing of liquid food: A review. Part 1: Fundamental engineering aspects. Food Research International, 2011, 44, 1571-1579.	6.2	39
7	Toxic effect of melanoidins from glucose–asparagine on trypsin activity. Food and Chemical Toxicology, 2009, 47, 2071-2075.	3.6	38
8	Effect of UV–Vis Photochemical Processing on Pear Juices from Six Different Varieties. Food and Bioprocess Technology, 2014, 7, 84-92.	4.7	36
9	Effect of UV–Vis Irradiation on Enzymatic Activities and Physicochemical Properties of Four Grape Musts from Different Varieties. Food and Bioprocess Technology, 2013, 6, 2223-2229.	4.7	34
10	Kinetic and thermodynamic compensation. A current and practical review for foods. Food Research International, 2017, 96, 132-153.	6.2	31
11	Inactivation of polyphenol oxidase by ultraviolet irradiation: Protective effect of melanins. Journal of Food Engineering, 2012, 110, 305-309.	5.2	29
12	FLOW BEHAVIOR OF CLARIFIED ORANGE JUICE AT LOW TEMPERATURES. Journal of Texture Studies, 2009, 40, 445-456.	2.5	28
13	Effect of UV–Vis irradiation on enzymatic activities and the physicochemical properties of nectarine juices from different varieties. LWT - Food Science and Technology, 2016, 65, 969-977.	5.2	27
14	Kinetic and thermodynamic study of the photochemical degradation of patulin. Food Research International, 2017, 99, 348-354.	6.2	27
15	Modelling of patulin photo-degradation by a UV multi-wavelength emitting lamp. Food Research International, 2014, 66, 158-166.	6.2	22
16	Modelling of ochratoxin A photo-degradation by a UV multi-wavelength emitting lamp. LWT - Food Science and Technology, 2015, 61, 385-392.	5.2	21
17	Ascorbic acid degradation in aqueous solution during UV-Vis irradiation. Food Chemistry, 2019, 297, 124864.	8.2	20
18	Kinetics of Peach Clarified Juice Discoloration Process with an Adsorbent Resin. Food Science and Technology International, 2008, 14, 57-62.	2.2	19

ALFONSO GARVÃN

#	Article	IF	CITATIONS
19	Inactivation of carboxypeptidase A and trypsin by UV–visible light. Innovative Food Science and Emerging Technologies, 2009, 10, 517-521.	5.6	16
20	Effect of enzymatic treatment and concentration method on chemical, rheological, microstructure and thermal properties of prickly pear syrup. LWT - Food Science and Technology, 2019, 113, 108314.	5.2	16
21	Modelling of 5-hydroxymethylfurfural photo-degradation by UV irradiation. Influence of temperature and pH. Food Research International, 2015, 71, 165-173.	6.2	15
22	Effect of apple fibre addition and temperature on the rheological properties of apple juice and compensation study. LWT - Food Science and Technology, 2019, 116, 108456.	5.2	14
23	Vapor-Liquid Equilibrium Data for Methanol, Ethanol, Methyl Acetate, Ethyl Acetate, and o-Xylene at 101.3 kPa. Journal of Chemical & Engineering Data, 1995, 40, 1067-1071.	1.9	13
24	Effect of the concentration on the kinetic model of the photo-degradation of 5-hydroxymethylfurfural by UV irradiation. Journal of Food Engineering, 2016, 191, 67-76.	5.2	13
25	Kinetic study and modelling of the UV photo-degradation of thiabendazole. Food Research International, 2016, 81, 133-140.	6.2	13
26	Effect of UV–Vis processing on enzymatic activity and the physicochemical properties of peach juices from different varieties. Innovative Food Science and Emerging Technologies, 2018, 48, 83-89.	5.6	13
27	DEGRADATION OF MANDARIN JUICE CONCENTRATES TREATED AT HIGH TEMPERATURES. Journal of Food Process Engineering, 2011, 34, 682-696.	2.9	10
28	Protective Effect of Melanoidins from Fructose–Glutamic Acid on Polyphenol Oxidase Inactivation by Ultraviolet–Visible Irradiation. Food and Bioprocess Technology, 2013, 6, 3290-3294.	4.7	10
29	RHEOLOGICAL BEHAVIOR OF LOQUAT (ERIOBOTRYA JAPONICA) JUICES. Journal of Texture Studies, 1996, 27, 175-184.	2.5	9
30	Modelling of UV absorption in a plane photoreactor for solutions with high-patulin concentration. Food Research International, 2015, 69, 266-273.	6.2	9
31	Rate-Controlling Mechanisms in the Photo-degradation of 5-Hydroxymethylfurfural. Food and Bioprocess Technology, 2016, 9, 1399-1407.	4.7	8
32	Rate-controlling mechanisms in the photo-degradation of ochratoxinÂA. LWT - Food Science and Technology, 2016, 73, 147-152.	5.2	7
33	Discoloration Kinetics of Clarified Apple Juice Treated with Lewatit® S 4528 Adsorbent Resin During Processing. Food and Bioprocess Technology, 2012, 5, 2132-2139.	4.7	6
34	Enzymatic peeling and discoloration of <scp>R</scp> ed <scp>B</scp> artlett pears. International Journal of Food Science and Technology, 2013, 48, 636-641.	2.7	5
35	Kinetic and thermodynamic compensation study of the hydration of faba beans (Vicia faba L.). Food Research International, 2019, 119, 390-397.	6.2	4
36	FLOW BEHAVIOR OF CLARIFIED PEAR AND APPLE JUICES AT SUBZERO TEMPERATURES. Journal of Food Processing and Preservation, 2013, 37, 133-138.	2.0	3

#	Article	IF	CITATIONS
37	Viscoelastic properties and compensation study of apple juice enriched with apple fiber. LWT - Food Science and Technology, 2021, 151, 111971.	5.2	3
38	Photodegradation in Foods. , 2021, , 345-367.		2
39	Photo-degradation of alfalfa saponins by UV–visible multi-wavelength irradiation. LWT - Food Science and Technology, 2022, 154, 112809.	5.2	2