Maria Kaliva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8411283/publications.pdf

Version: 2024-02-01

394421 477307 31 936 19 29 citations h-index g-index papers 31 31 31 1101 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Poly(2â€ethylâ€2â€oxazoline) grafted gellan gum for potential application in transmucosal drug delivery. Polymers for Advanced Technologies, 2021, 32, 2770-2780.	3.2	10
2	Responsive Polyesters with Alkene and Carboxylic Acid Side-Groups for Tissue Engineering Applications. Polymers, 2021, 13, 1636.	4.5	7
3	Nonlinear rheometry of entangled polymeric rings and ring-linear blends. Journal of Rheology, 2021, 65, 695-711.	2.6	24
4	Polysaccharides and Applications in Regenerative Medicine. , 2021, , 1-33.		0
5	Nanomaterials characterization. , 2020, , 401-433.		26
6	Biodegradable Chitosan-graft-Poly(l-lactide) Copolymers For Bone Tissue Engineering. Polymers, 2020, 12, 316.	4.5	21
7	Multi-photon polymerization of bio-inspired, thymol-functionalized hybrid materials with biocompatible and antimicrobial activity. Polymer Chemistry, 2020, 11, 4078-4083.	3.9	17
8	Multiphoton 3D Printing of Biopolymer-Based Hydrogels. ACS Biomaterials Science and Engineering, 2019, 5, 6161-6170.	5. 2	39
9	Synthesis, Nanomechanical Characterization and Biocompatibility of a Chitosan-Graft-Poly(Îμ-caprolactone) Copolymer for Soft Tissue Regeneration. Materials, 2019, 12, 150.	2.9	14
10	Initiatorâ€Free, Multiphoton Polymerization of Gelatin Methacrylamide. Macromolecular Materials and Engineering, 2018, 303, 1800458.	3.6	23
11	Osteogenic Potential of Pre-Osteoblastic Cells on a Chitosan-graft-Polycaprolactone Copolymer. Materials, 2018, 11, 490.	2.9	23
12	Well-defined copolymers synthesized by RAFT polymerization as effective modifiers to enhance the photocatalytic performance of TiO 2. Applied Surface Science, 2017, 399, 106-113.	6.1	11
13	Recombinant human bone morphogenetic protein 2 (rhBMP-2) immobilized on laser-fabricated 3D scaffolds enhance osteogenesis. Colloids and Surfaces B: Biointerfaces, 2017, 149, 233-242.	5.0	32
14	Immunomodulatory Potential of Chitosan- <i>graft</i> -poly(l̂µ-caprolactone) Copolymers toward the Polarization of Bone-Marrow-Derived Macrophages. ACS Biomaterials Science and Engineering, 2017, 3, 1341-1349.	5.2	22
15	Biodegradation of weathered polystyrene films in seawater microcosms. Scientific Reports, 2017, 7, 17991.	3.3	121
16	Nanoporous polystyrene–porphyrin nanoparticles for selective gas separation. Polymer Chemistry, 2016, 7, 3026-3033.	3.9	7
17	Wharton's Jelly Mesenchymal Stem Cell Response on Chitosan-graft-poly (ε-caprolactone) Copolymer for Myocardium Tissue Engineering. Current Pharmaceutical Design, 2014, 20, 2030-2039.	1.9	13
18	Metallic Nanocatalysts Embedded within p <scp>H</scp> â€Responsive Polymeric Microgels and Deposition onto Solid Substrates. Macromolecular Symposia, 2013, 331-332, 17-25.	0.7	1

#	Article	IF	Citations
19	Microporous Polystyrene Particles for Selective Carbon Dioxide Capture. Langmuir, 2012, 28, 2690-2695.	3.5	38
20	A Unique Dinuclear Mixed V(V) Oxo-peroxo Complex in the Structural Speciation of the Ternary V(V)-Peroxo-citrate System. Potential Mechanistic and Structural Insight into the Aqueous Synthetic Chemistry of Dinuclear V(V)-Citrate Species with $H < sub > 2 < / sub > 0 < sub > 2 < / sub > 1. Inorganic Chemistry, 2011, 50, 11423-11436.$	4.0	15
21	Probing for missing links in the binary and ternary V(V)–citrate–(H2O2) systems: Synthetic efforts and in vitro insulin mimetic activity studies. Journal of Inorganic Biochemistry, 2009, 103, 503-516.	3.5	20
22	Aqueous V(V)-Peroxo-Amino Acid Chemistry. Synthesis, Structural and Spectroscopic Characterization of Unusual Ternary Dinuclear Tetraperoxo Vanadium(V)-Glycine Complexes. Inorganic Chemistry, 2009, 48, 476-487.	4.0	31
23	pH-specific synthesis, isolation, spectroscopic and structural characterization of a new dimeric assembly of dinuclear vanadium(V)–citrate–peroxo species from aqueous solutions. Inorganica Chimica Acta, 2008, 361, 2631-2640.	2.4	18
24	Synthesis, isolation, spectroscopic and structural characterization of a new pH complex structural variant from the aqueous vanadium(V)-peroxo-citrate ternary system. Inorganica Chimica Acta, 2006, 359, 4535-4548.	2.4	20
25	Interactions of vanadium(V)–citrate complexes with the sarcoplasmic reticulum calcium pump. Journal of Inorganic Biochemistry, 2005, 99, 2355-2361.	3.5	31
26	pH-Specific Synthesis of a Dinuclear Vanadium(V)â^Peroxoâ^Citrate Complex in Aqueous Solutions:Â pH-Dependent Linkage, Spectroscopic and Structural Correlations with Other Aqueous Vanadium(V)â^Peroxoâ^Citrate and Non-Peroxo Species. Inorganic Chemistry, 2004, 43, 2895-2905.	4.0	36
27	Systematic studies on pH-dependent transformations of dinuclear vanadium(V)–citrate complexes in aqueous solutions. Journal of Inorganic Biochemistry, 2003, 93, 161-173.	3.5	41
28	A New Dinuclear Vanadium(V)â^'Citrate Complex from Aqueous Solutions. Synthetic, Structural, Spectroscopic, and pH-Dependent Studies in Relevance to Aqueous Vanadium(V)â^'Citrate Speciation. Inorganic Chemistry, 2002, 41, 3850-3858.	4.0	50
29	Reactivity Investigation of Dinuclear Vanadium(IV,V)â^'Citrate Complexes in Aqueous Solutions. A Closer Look into Aqueous Vanadiumâ^'Citrate Interconversions. Inorganic Chemistry, 2002, 41, 7015-7023.	4.0	28
30	Vanadium(IV)â^'Citrate Complex Interconversions in Aqueous Solutions. A pH-Dependent Synthetic, Structural, Spectroscopic, and Magnetic Study. Inorganic Chemistry, 2001, 40, 5772-5779.	4.0	131
31	pH-Dependent Investigations of Vanadium(V)â^'Peroxoâ^'Malate Complexes from Aqueous Solutions. In Search of Biologically Relevant Vanadium(V)â^'Peroxo Species. Inorganic Chemistry, 2001, 40, 3711-3718.	4.0	66