Timothy C H Liew

List of Publications by Citations

Source: https://exaly.com/author-pdf/8410979/timothy-c-h-liew-publications-by-citations.pdf

Version: 2024-04-04

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

166
papers5,660
citations39
h-index69
g-index169
ext. papers7,072
ext. citations6.6
avg, IF6.1
L-index

#	Paper	IF	Citations
166	Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. <i>Nature</i> , 2015 , 526, 554-8	50.4	281
165	Excitonpolariton spin switches. <i>Nature Photonics</i> , 2010 , 4, 361-366	33.9	256
164	Single photons from coupled quantum modes. <i>Physical Review Letters</i> , 2010 , 104, 183601	7.4	251
163	Observation of the optical spin Hall effect. <i>Nature Physics</i> , 2007 , 3, 628-631	16.2	229
162	Room-Temperature Polariton Lasing in All-Inorganic Perovskite Nanoplatelets. <i>Nano Letters</i> , 2017 , 17, 3982-3988	11.5	227
161	Exciton-polariton topological insulator. <i>Nature</i> , 2018 , 562, 552-556	50.4	222
160	Optical circuits based on polariton neurons in semiconductor microcavities. <i>Physical Review Letters</i> , 2008 , 101, 016402	7.4	188
159	Polariton polarization-sensitive phenomena in planar semiconductor microcavities. <i>Semiconductor Science and Technology</i> , 2010 , 25, 013001	1.8	173
158	Polariton condensate transistor switch. <i>Physical Review B</i> , 2012 , 85,	3.3	144
157	Topological polaritons and excitons in garden-variety systems. <i>Physical Review B</i> , 2015 , 91,	3.3	104
156	Exciton-polariton integrated circuits. <i>Physical Review B</i> , 2010 , 82,	3.3	100
155	Probing the dynamics of spontaneous quantum vortices in polariton superfluids. <i>Physical Review Letters</i> , 2011 , 106, 115301	7.4	99
154	Propagation and amplification dynamics of 1D polariton condensates. <i>Physical Review Letters</i> , 2012 , 109, 216404	7.4	90
153	Nonlinear optical spin Hall effect and long-range spin transport in polariton lasers. <i>Physical Review Letters</i> , 2012 , 109, 036404	7.4	89
152	Polaritonic devices. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2011 , 43, 1543-1568	3	87
151	Chiral Bogoliubov excitations in nonlinear bosonic systems. <i>Physical Review B</i> , 2016 , 93,	3.3	84
150	Complete architecture of integrated photonic circuits based on and and not logic gates of exciton polaritons in semiconductor microcavities. <i>Physical Review B</i> , 2013 , 87,	3.3	81

(2009-2020)

149	Observation of exciton polariton condensation in a perovskite lattice at room temperature. <i>Nature Physics</i> , 2020 , 16, 301-306	16.2	80
148	Device-independent state estimation based on Bell inequalities. <i>Physical Review A</i> , 2009 , 80,	2.6	78
147	Energy relaxation in one-dimensional polariton condensates. <i>Physical Review B</i> , 2010 , 82,	3.3	75
146	Spontaneous pattern formation in a polariton condensate. <i>Physical Review Letters</i> , 2011 , 107, 106401	7.4	74
145	Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. <i>Science Advances</i> , 2018 , 4, eaau0244	14.3	74
144	Interference of coherent polariton beams in microcavities: polarization-controlled optical gates. <i>Physical Review Letters</i> , 2007 , 99, 196402	7.4	69
143	Spin currents in a coherent exciton gas. <i>Physical Review Letters</i> , 2013 , 110, 246403	7.4	66
142	Room Temperature Coherently Coupled Exciton-Polaritons in Two-Dimensional Organic-Inorganic Perovskite. <i>ACS Nano</i> , 2018 , 12, 8382-8389	16.7	64
141	Phase shift of a weak coherent beam induced by a single atom. <i>Physical Review Letters</i> , 2009 , 103, 1536	50 / 1.4	59
140	Stochastic polarization formation in exciton-polariton Bose-Einstein condensates. <i>Physical Review B</i> , 2009 , 80,	3.3	57
139	Optomechanics with cavity polaritons: dissipative coupling and unconventional bistability. <i>Physical Review Letters</i> , 2014 , 112, 076402	7.4	56
138	Tunable single-photon emission from dipolaritons. <i>Physical Review A</i> , 2014 , 90,	2.6	56
137	Spin Order and Phase Transitions in Chains of Polariton Condensates. <i>Physical Review Letters</i> , 2017 , 119, 067401	7.4	53
136	Spin rings in bistable planar semiconductor microcavities. <i>Physical Review Letters</i> , 2010 , 105, 216403	7.4	50
135	Motion of spin polariton bullets in semiconductor microcavities. <i>Physical Review Letters</i> , 2011 , 107, 146	54 9 .24	49
134	Spin rings in semiconductor microcavities. <i>Physical Review Letters</i> , 2008 , 100, 116401	7.4	49
133	Spontaneous symmetry breaking in a polariton and photon laser. <i>Physical Review Letters</i> , 2012 , 109, 01	6 \$ 0 ₄ 4	48
132	Interfacing light and single atoms with a lens. New Journal of Physics, 2009, 11, 043011	2.9	48

131	Proposal for a bosonic cascade laser. <i>Physical Review Letters</i> , 2013 , 110, 047402	7.4	47
130	Suppression of Zeeman splitting of the energy levels of exciton-polariton condensates in semiconductor microcavities in an external magnetic field. <i>Physical Review Letters</i> , 2011 , 106, 257401	7.4	45
129	Dissociation dynamics of singly charged vortices into half-quantum vortex pairs. <i>Nature Communications</i> , 2012 , 3, 1309	17.4	42
128	Instability-induced formation and nonequilibrium dynamics of phase defects in polariton condensates. <i>Physical Review B</i> , 2015 , 91,	3.3	40
127	Collective state transitions of exciton-polaritons loaded into a periodic potential. <i>Physical Review B</i> , 2016 , 93,	3.3	39
126	Polarization shaping of Poincarlbeams by polariton oscillations. <i>Light: Science and Applications</i> , 2015 , 4, e350-e350	16.7	37
125	Generation and dynamics of vortex lattices in coherent exciton-polariton fields. <i>Physical Review Letters</i> , 2008 , 101, 187401	7.4	37
124	Quantum reservoir processing. Npj Quantum Information, 2019, 5,	8.6	36
123	Robust platform for engineering pure-quantum-state transitions in polariton condensates. <i>Physical Review B</i> , 2015 , 92,	3.3	34
122	Triggered single-photon emitters based on stimulated parametric scattering in weakly nonlinear systems. <i>Physical Review A</i> , 2014 , 90,	2.6	34
121	Excitation of vortices in semiconductor microcavities. <i>Physical Review B</i> , 2007 , 75,	3.3	34
120	Perovskite semiconductors for room-temperature exciton-polaritonics. <i>Nature Materials</i> , 2021 , 20, 131	5 <i>217</i> 324	1 33
119	Direct measurement of polariton-polariton interaction strength in the Thomas-Fermi regime of exciton-polariton condensation. <i>Physical Review B</i> , 2019 , 100,	3.3	32
118	Spontaneous self-ordered states of vortex-antivortex pairs in a polariton condensate. <i>Physical Review B</i> , 2013 , 88,	3.3	32
117	Spin-to-orbital angular momentum conversion in semiconductor microcavities. <i>Physical Review B</i> , 2011 , 83,	3.3	32
116	Chiral Modes at Exceptional Points in Exciton-Polariton Quantum Fluids. <i>Physical Review Letters</i> , 2018 , 120, 065301	7.4	31
115	Anisotropic optical spin Hall effect in semiconductor microcavities. <i>Physical Review B</i> , 2009 , 80,	3.3	31
114	Dynamics of a polariton condensate transistor switch. <i>Applied Physics Letters</i> , 2012 , 101, 261116	3.4	29

Multimode entanglement in coupled cavity arrays. New Journal of Physics, 2013, 15, 025015	2.9	28	
Single-shot condensation of exciton polaritons and the hole burning effect. <i>Nature Communications</i> , 2018 , 9, 2944	17.4	27	
Polaritonic Neuromorphic Computing Outperforms Linear Classifiers. <i>Nano Letters</i> , 2020 , 20, 3506-351	211.5	26	
Continuous terahertz emission from dipolaritons. <i>Physical Review B</i> , 2013 , 88,	3.3	26	
Quantum reflections and shunting of polariton condensate wave trains: Implementation of a logic AND gate. <i>Physical Review B</i> , 2013 , 88,	3.3	26	
Stochastic Gross-Pitaevskii equation for the dynamical thermalization of Bose-Einstein condensates. <i>Physical Review Letters</i> , 2013 , 110, 127402	7.4	25	
Nonresonant optical control of a spinor polariton condensate. <i>Physical Review B</i> , 2016 , 93,	3.3	24	
Energy relaxation of exciton-polariton condensates in quasi-one-dimensional microcavities. <i>Physical Review B</i> , 2013 , 88,	3.3	24	
Antichiral edge states in an exciton polariton strip. <i>Physical Review B</i> , 2019 , 99,	3.3	23	
Half-skyrmion spin textures in polariton microcavities. <i>Physical Review B</i> , 2016 , 94,	3.3	23	
Synchronization crossover of polariton condensates in weakly disordered lattices. <i>Physical Review B</i> , 2018 , 97,	3.3	23	
Optical bistability in electrically driven polariton condensates. <i>Physical Review B</i> , 2015 , 91,	3.3	23	
Signature of the microcavity exciton polariton relaxation mechanism in the polarization of emitted light. <i>Physical Review B</i> , 2009 , 79,	3.3	23	
Robust Room Temperature Valley Hall Effect of Interlayer Excitons. <i>Nano Letters</i> , 2020 , 20, 1345-1351	11.5	23	
One-dimensional cubic-quintic Gross-Pitaevskii equation for Bose-Einstein condensates in a trap potential. <i>European Physical Journal D</i> , 2013 , 67, 1	1.3	22	
Quantum computing with exciton-polariton condensates. <i>Npj Quantum Information</i> , 2020 , 6,	8.6	21	
Information processing with topologically protected vortex memories in exciton-polariton condensates. <i>Physical Review B</i> , 2014 , 90,	3.3	21	
Quantum entanglement in nanocavity arrays. <i>Physical Review A</i> , 2012 , 85,	2.6	21	
	Polaritonic Neuromorphic Computing Outperforms Linear Classifiers. Nano Letters, 2020, 20, 3506-351 Continuous terahertz emission from dipolaritons. Physical Review B, 2013, 88, Quantum reflections and shunting of polariton condensate wave trains: Implementation of a logic AND gate. Physical Review B, 2013, 88, Stochastic Gross-Pitaevskii equation for the dynamical thermalization of Bose-Einstein condensates. Physical Review Letters, 2013, 110, 127402 Nonresonant optical control of a spinor polariton condensate. Physical Review B, 2016, 93, Energy relexation of exciton-polariton condensates in quasi-one-dimensional microcavities. Physical Review B, 2013, 88, Antichiral edge states in an exciton polariton strip. Physical Review B, 2019, 99, Half-skyrmion spin textures in polariton microcavities. Physical Review B, 2016, 94, Synchronization crossover of polariton condensates in weakly disordered lattices. Physical Review B, 2018, 97, Optical bistability in electrically driven polariton condensates. Physical Review B, 2015, 91, Signature of the microcavity excitonβolariton relaxation mechanism in the polarization of emitted light. Physical Review B, 2009, 79, Robust Room Temperature Valley Hall Effect of Interlayer Excitons. Nano Letters, 2020, 20, 1345-1351 One-dimensional cubic-quintic Gross-Pitaevskii equation for Bose-Einstein condensates in a trap potential. European Physical Journal D, 2013, 67, 1 Quantum computing with exciton-polariton condensates. Npj Quantum Information, 2020, 6, Information processing with topologically protected vortex memories in exciton-polariton condensates. Physical Review B, 2014, 90,	Single-shot condensation of exciton polaritons and the hole burning effect. Nature Communications 2,2018, 9, 2944 Polaritonic Neuromorphic Computing Outperforms Linear Classifiers. Nano Letters, 2020, 20, 3506-351211.5 Continuous terahertz emission from dipolaritons. Physical Review B, 2013, 88, 33 Quantum reflections and shunting of polariton condensate wave trains: Implementation of a logic AND gate. Physical Review B, 2013, 88, 33 Stochastic Gross-Pitaevskii equation for the dynamical thermalization of Bose-Einstein condensates. Physical Review B, 2013, 110, 127402 Nonresonant optical control of a spinor polariton condensate. Physical Review B, 2016, 93, 33 Energy relaxation of exciton-polariton condensates in quasi-one-dimensional microcavities. Physical Review B, 2013, 88, 33 Antichiral edge states in an exciton polariton strip. Physical Review B, 2019, 99, 33 Fynchronization crossover of polariton microcavities. Physical Review B, 2016, 94, 33 Synchronization crossover of polariton condensates in weakly disordered lattices. Physical Review B, 2018, 97, 33 Synchronization crossover of polariton condensates in weakly disordered lattices. Physical Review B, 2018, 97, 33 Signature of the microcavity excitonBolariton relaxation mechanism in the polarization of emitted light. Physical Review B, 2009, 79, 33 Robust Room Temperature Valley Hall Effect of Interlayer Excitons. Nano Letters, 2020, 20, 1345-1351 11.5 One-dimensional cubic-quintic Gross-Pitaevskii equation for Bose-Einstein condensates in a trap potential. European Physical Journal D, 2013, 67, 1 13 Quantum computing with exciton-polariton condensates. NpJ Quantum Information, 2020, 6, 86 Information processing with topologically protected vortex memories in exciton-polariton condensates. Physical Review B, 2014, 90, 33	Single-shot condensation of exciton polaritons and the hole burning effect. Nature Communications 174 27 Polaritonic Neuromorphic Computing Outperforms Linear Classifiers. Nano Letters, 2020, 20, 3506-3512 11.5 26 Continuous terahertz emission from dipolaritons. Physical Review B, 2013, 88, 3.3 26 Quantum reflections and shunting of polariton condensate wave trains: Implementation of a logic 3.3 26 AND gate. Physical Review B, 2013, 88, 3.3 26 Stochastic Gross-Pitaevskii equation for the dynamical thermalization of Bose-Einstein 74 25 Nonresonant optical control of a spinor polariton condensate. Physical Review B, 2016, 93, 3.3 24 Energy relaxation of exciton-polariton condensates in quasi-one-dimensional microcavities. Physical Review B, 2013, 88, 3.3 23 Half-skyrmion spin textures in polariton microcavities. Physical Review B, 2016, 94, 3.3 23 Synchronization crossover of polariton condensates in weakly disordered lattices. Physical Review B, 2015, 91, 2018, 97, 3.3 23 Signature of the microcavity exciton@polariton relaxation mechanism in the polarization of emitted light. Physical Review B, 2009, 79, 2018, 97, 99, 99, 99, 99, 99, 99, 99, 99, 99

95	Lasing in Bose-Fermi mixtures. <i>Scientific Reports</i> , 2016 , 6, 20091	4.9	20
94	Optical control of spin textures in quasi-one-dimensional polariton condensates. <i>Physical Review B</i> , 2015 , 91,	3.3	20
93	Electrically controllable router of interlayer excitons. Science Advances, 2020, 6,	14.3	20
92	Spontaneous and superfluid chiral edge states in exciton-polariton condensates. <i>Physical Review B</i> , 2017 , 96,	3.3	19
91	Coupling between Exciton-Polariton Corner Modes through Edge States. <i>Physical Review Letters</i> , 2020 , 124, 063901	7.4	19
90	Bistability in microcavities with incoherent optical or electrical excitation. <i>Physical Review B</i> , 2014 , 90,	3.3	19
89	Spin selective filtering of polariton condensate flow. <i>Applied Physics Letters</i> , 2015 , 107, 011106	3.4	19
88	Ultralow Threshold Polariton Condensate in a Monolayer Semiconductor Microcavity at Room Temperature. <i>Nano Letters</i> , 2021 , 21, 3331-3339	11.5	19
87	Ballistic spin transport in exciton gases. <i>Physical Review B</i> , 2013 , 88,	3.3	18
86	Neuromorphic Computing in Ginzburg-Landau Polariton-Lattice Systems. <i>Physical Review Applied</i> , 2019 , 11,	4.3	17
85	Spontaneous Polariton Currents in Periodic Lateral Chains. <i>Physical Review Letters</i> , 2017 , 119, 067406	7.4	17
84	Quantum Neuromorphic Platform for Quantum State Preparation. <i>Physical Review Letters</i> , 2019 , 123, 260404	7.4	16
83	Motion of patterns in polariton quantum fluids with spin-orbit interaction. <i>Physical Review B</i> , 2014 , 89,	3.3	15
82	Operation speed of polariton condensate switches gated by excitons. <i>Physical Review B</i> , 2014 , 89,	3.3	15
81	Suppression of Zeeman splitting and polarization steps in localized exciton-polariton condensates. <i>Physical Review B</i> , 2008 , 77,	3.3	15
80	Optical switching of topological phase in a perovskite polariton lattice. Science Advances, 2021, 7,	14.3	15
79	Exciton-polariton quantum gates based on continuous variables. <i>Physical Review B</i> , 2016 , 93,	3.3	14
78	Dynamical Blockade in a Single-Mode Bosonic System. <i>Physical Review Letters</i> , 2019 , 123, 013602	7-4	14

77	Polariton spin whirls. <i>Physical Review B</i> , 2015 , 92,	3.3	14
76	Multipartite polariton entanglement in semiconductor microcavities. <i>Physical Review A</i> , 2011 , 84,	2.6	14
75	Spin-orbit coupling and the topology of gases of spin-degenerate cold excitons in photoexcited GaAs-AlGaAs quantum wells. <i>Physical Review B</i> , 2012 , 86,	3.3	14
74	Nonreciprocal Transport of Exciton Polaritons in a Non-Hermitian Chain. <i>Physical Review Letters</i> , 2020 , 125, 123902	7.4	14
73	Incoherent excitation and switching of spin states in exciton-polariton condensates. <i>Physical Review B</i> , 2015 , 92,	3.3	13
72	Driven-dissipative spin chain model based on exciton-polariton condensates. <i>Physical Review B</i> , 2017 , 96,	3.3	12
71	Quantum exciton-polariton networks through inverse four-wave mixing. <i>Physical Review B</i> , 2018 , 97,	3.3	12
70	Interplay between superfluidity and magnetic self-trapping of exciton polaritons. <i>Physical Review B</i> , 2009 , 80,	3.3	12
69	Emergence of microfrequency comb via limit cycles in dissipatively coupled condensates. <i>Physical Review B</i> , 2020 , 101,	3.3	11
68	Realization of Hofstadter's butterfly and a one-way edge mode in a polaritonic system. <i>Physical Review B</i> , 2018 , 98,	3.3	11
67	Optical diode based on exciton-polaritons. <i>Applied Physics Letters</i> , 2013 , 103, 191110	3.4	11
66	Interplay between weak localization of exciton-polaritons and the optical spin Hall effect. <i>Physical Review B</i> , 2009 , 79,	3.3	11
65	Neuromorphic Binarized Polariton Networks. <i>Nano Letters</i> , 2021 , 21, 3715-3720	11.5	11
64	Multivalley engineering in semiconductor microcavities. <i>Scientific Reports</i> , 2017 , 7, 45243	4.9	10
63	Nonresonant spin selection methods and polarization control in exciton-polariton condensates. <i>Physical Review B</i> , 2019 , 99,	3.3	10
62	Parity bifurcations in trapped multistable phase locked exciton-polariton condensates. <i>Physical Review B</i> , 2018 , 97,	3.3	10
61	Magnetic field control of the optical spin Hall effect. <i>Physical Review B</i> , 2013 , 88,	3.3	10
60	Exciton-polariton oscillations in real space. <i>Physical Review B</i> , 2014 , 90,	3.3	10

59	Spontaneously coherent orbital coupling of counterrotating exciton polaritons in annular perovskite microcavities. <i>Light: Science and Applications</i> , 2021 , 10, 45	16.7	9
58	Nonlinear Parametric Scattering of Exciton Polaritons in Perovskite Microcavities. <i>Nano Letters</i> , 2021 , 21, 3120-3126	11.5	9
57	Probabilistic solving of NP-hard problems with bistable nonlinear optical networks. <i>Physical Review B</i> , 2019 , 99,	3.3	7
56	Perceptrons with Hebbian learning based on wave ensembles in spatially patterned potentials. <i>Physical Review Letters</i> , 2015 , 114, 118101	7.4	7
55	Floquet topological polaritons in semiconductor microcavities. <i>Physical Review B</i> , 2018 , 97,	3.3	7
54	Prototype of a bistable polariton field-effect transistor switch. <i>Scientific Reports</i> , 2017 , 7, 5114	4.9	7
53	Hybrid states of Tamm plasmons and exciton-polaritons. <i>Superlattices and Microstructures</i> , 2011 , 49, 229-232	2.8	7
52	All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. <i>Science Advances</i> , 2021 , 7, eabj6627	14.3	7
51	Reconstructing Quantum States With Quantum Reservoir Networks. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , 32, 3148-3155	10.3	7
50	Interactive optomechanical coupling with nonlinear polaritonic systems. <i>Physical Review B</i> , 2017 , 95,	3.3	6
49	Hyperbolic Region in an Array of Quantum Wires in a Planar Cavity. ACS Photonics, 2017, 4, 1165-1171	6.3	6
48	Quantum statistics of bosonic cascades. <i>New Journal of Physics</i> , 2016 , 18, 023041	2.9	6
47	Design for a Nanoscale Single-Photon Spin Splitter for Modes with Orbital Angular Momentum. <i>Physical Review Letters</i> , 2018 , 121, 053901	7.4	6
46	Electrical and optical switching in the bistable regime of an electrically injected polariton laser. <i>Physical Review B</i> , 2017 , 96,	3.3	6
45	Switching waves in multilevel incoherently driven polariton condensates. <i>Physical Review B</i> , 2015 , 92,	3.3	6
44	Vortices in spinor cold exciton condensates with spin-orbit interaction. <i>Physical Review B</i> , 2014 , 89,	3.3	6
43	Nonlinear effects in multi-photon polaritonics. <i>Optics Express</i> , 2013 , 21, 15183-94	3.3	6
42	Polarization of exciton-polariton condensates in lateral traps. <i>Physical Review B</i> , 2010 , 82,	3.3	6

(2019-2009)

41	Polarization phenomena in resonantly pumped disordered semiconductor microcavities. <i>Physical Review B</i> , 2009 , 80,	3.3	6
40	Direct measurement of a non-Hermitian topological invariant in a hybrid light-matter system. <i>Science Advances</i> , 2021 , 7, eabj8905	14.3	6
39	Bosonic lasers: The state of the art (Review Article). Low Temperature Physics, 2016, 42, 323-329	0.7	6
38	Polarization-dependent light-matter coupling and highly indistinguishable resonant fluorescence photons from quantum dot-micropillar cavities with elliptical cross section. <i>Physical Review B</i> , 2019 , 100,	3.3	6
37	Single photons from a gain medium below threshold. <i>Physical Review B</i> , 2018 , 97,	3.3	5
36	Parity solitons in nonresonantly driven-dissipative condensate channels. <i>Physical Review B</i> , 2017 , 96,	3.3	5
35	Optically erasing disorder in semiconductor microcavities with dynamic nuclear polarization. <i>Physical Review Letters</i> , 2011 , 106, 146404	7.4	5
34	Creating and concentrating quantum resource states in noisy environments using a quantum neural network. <i>Neural Networks</i> , 2021 , 136, 141-151	9.1	5
33	Optically induced topological spin-valley Hall effect for exciton polaritons. <i>Physical Review B</i> , 2021 , 103,	3.3	5
32	An exciton-polariton bolometer for terahertz radiation detection. <i>Scientific Reports</i> , 2018 , 8, 10092	4.9	5
31	Quantum Neuromorphic Computing with Reservoir Computing Networks. <i>Advanced Quantum Technologies</i> , 2021 , 4, 2100053	4.3	5
30	Semiconductor quantum well irradiated by a two-mode electromagnetic field as a terahertz emitter. <i>Physical Review A</i> , 2018 , 97,	2.6	4
29	Optically induced transparency in bosonic cascade lasers. <i>Optics Letters</i> , 2018 , 43, 259-262	3	4
28	Artificial life in an exciton-polariton lattice. <i>New Journal of Physics</i> , 2020 , 22, 103062	2.9	4
27	Realising and compressing quantum circuits with quantum reservoir computing. <i>Communications Physics</i> , 2021 , 4,	5.4	4
26	Interaction-induced double-sided skin effect in an exciton-polariton system. <i>Physical Review B</i> , 2021 , 103,	3.3	4
25	Cellular automata in photonic cavity arrays. <i>Optics Express</i> , 2016 , 24, 24930-24937	3.3	4
24	One-Way Reflection-Free Exciton-Polariton Spin-Filtering Channel. <i>Physical Review Applied</i> , 2019 , 12,	4.3	4

23	Topological phase transition in an all-optical exciton-polariton lattice. Optica, 2021, 8, 1084	8.6	4
22	Nonlinear polariton parametric emission in an atomically thin semiconductor based microcavity <i>Nature Nanotechnology</i> , 2022 ,	28.7	4
21	Optical probing of the Coulomb interactions of an electrically pumped polariton condensate. <i>Applied Physics Letters</i> , 2017 , 110, 151103	3.4	3
20	Spontaneous spin bifurcations in a Bose-Einstein condensate of indirect excitons. <i>Superlattices and Microstructures</i> , 2017 , 108, 57-63	2.8	3
19	Universal Self-Correcting Computing with Disordered Exciton-Polariton Neural Networks. <i>Physical Review Applied</i> , 2020 , 13,	4.3	3
18	Kinetic Monte Carlo approach to nonequilibrium bosonic systems. <i>Physical Review B</i> , 2017 , 96,	3.3	3
17	Non-adiabatic population transfer in coupled bosonic systems. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2012 , 45, 245003	1.3	3
16	Energy-Efficient Neural Network Inference with Microcavity Exciton Polaritons. <i>Physical Review Applied</i> , 2021 , 16,	4.3	3
15	Bistability in bosonic terahertz lasers. Journal of Physics Condensed Matter, 2014, 26, 085303	1.8	2
14	Optically erasing disorder in semiconductor microcavities using polariton polariton interactions. <i>Physica Status Solidi (B): Basic Research</i> , 2012 , 249, 880-884	1.3	2
13	Nonreciprocal exciton-polariton ring lattices. <i>Physical Review B</i> , 2021 , 104,	3.3	2
12	Perovskite polariton parametric oscillator. <i>Advanced Photonics</i> , 2021 , 3,	8.1	2
11	Unidirectional flow of lossless exciton-polariton signals. <i>Journal of Optics (United Kingdom)</i> , 2018 , 20, 025503	1.7	1
10	Holographic arrays based on semiconductor microstructures. <i>Physical Review B</i> , 2012 , 86,	3.3	1
9	Room Temperature Light-Mediated Long-Range Coupling of Excitons in Perovskites. <i>Advanced Optical Materials</i> , 2021 , 9, 2001835	8.1	1
8	Superpolynomial quantum enhancement in polaritonic neuromorphic computing. <i>Physical Review B</i> , 2021 , 103,	3.3	1
7	On the possibility of a terahertz light emitting diode based on a dressed quantum well. <i>Scientific Reports</i> , 2019 , 9, 16320	4.9	1
6	All-to-All Intramodal Condensate Coupling by Multifrequency Excitation of Polaritons. <i>ACS Photonics</i> , 2019 , 6, 123-129	6.3	1

LIST OF PUBLICATIONS

5	Terahertz cascades from nanoparticles. <i>Physical Review B</i> , 2018 , 97,	3.3	1
4	Giant Enhancement of Unconventional Photon Blockade in a Dimer Chain <i>Physical Review Letters</i> , 2021 , 127, 240402	7.4	1
3	Polariton condensates for classical and quantum computing. Nature Reviews Physics,	23.6	1
2	Tightly bound indirect exciton in single-layer hybrid organic-inorganic perovskite semiconductor. Superlattices and Microstructures, 2017, 110, 108-113	2.8	
1	Polariton condensates: Electrical spin switching. <i>Nature Materials</i> , 2016 , 15, 1053-4	27	