Nadejda Komendantova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8410932/publications.pdf

Version: 2024-02-01

71 papers

1,777 citations

331259 21 h-index 288905 40 g-index

73 all docs 73 docs citations

73 times ranked 1738 citing authors

#	Article	IF	CITATIONS
1	WACC the dog: The effect of financing costs on the levelized cost of solar PV power. Renewable Energy, 2015, 75, 888-898.	4.3	165
2	Perception of risks in renewable energy projects: The case of concentrated solar power in North Africa. Energy Policy, 2012, 40, 103-109.	4.2	162
3	Multi-hazard and multi-risk decision-support tools as a part of participatory risk governance: Feedback from civil protection stakeholders. International Journal of Disaster Risk Reduction, 2014, 8, 50-67.	1.8	123
4	Governance of energy transition in Iran: Investigating public acceptance and willingness to use renewable energy sources through socio-psychological model. Renewable and Sustainable Energy Reviews, 2015, 45, 565-573.	8.2	96
5	Perception of barriers for expansion of electricity grids in the European Union. Energy Policy, 2012, 47, 254-259.	4.2	90
6	Community acceptance of large-scale solar energy installations in developing countries: Evidence from Morocco. Energy Research and Social Science, 2016, 14, 80-89.	3.0	87
7	Beyond Decide-Announce-Defend (DAD) and Not-in-My-Backyard (NIMBY) models? Addressing the social and public acceptance of electric transmission lines in Germany. Energy Research and Social Science, 2016, 22, 224-231.	3.0	72
8	Policies to keep and expand the option of concentrating solar power for dispatchable renewable electricity. Energy Policy, 2018, 116, 193-197.	4.2	51
9	Transferring awareness into action: A meta-analysis of the behavioral drivers of energy transitions in Germany, Austria, Finland, Morocco, Jordan and Iran. Energy Research and Social Science, 2021, 71, 101826.	3.0	49
10	De-risking investment into concentrated solar power in North Africa: Impacts on the costs of electricity generation. Renewable Energy, 2016, 92, 262-272.	4.3	46
11	Green or in between? Examining youth perceptions of renewable energy in Iran. Energy Research and Social Science, 2015, 8, 78-85.	3.0	44
12	Solar power investment in North Africa: Reducing perceived risks. Renewable and Sustainable Energy Reviews, 2011, 15, 4829-4835.	8.2	42
13	Of transitions and models: Community engagement, democracy, and empowerment in the Austrian energy transition. Energy Research and Social Science, 2018, 39, 141-151.	3.0	41
14	Mainstreaming Multi-Risk Approaches into Policy. Geosciences (Switzerland), 2017, 7, 129.	1.0	40
15	Participatory governance in the transformation of the South African energy sector: Critical success factors for environmental leadership. Journal of Cleaner Production, 2017, 154, 621-632.	4.6	38
16	Morocco's sustainable energy transition and the role of financing costs: a participatory electricity system modeling approach. Energy, Sustainability and Society, 2019, 9, .	1.7	33
17	Assessment of social vulnerability to seismic hazard in Nablus, Palestine. International Journal of Disaster Risk Reduction, 2018, 28, 491-506.	1.8	29
18	Iranian agriculture advisors' perception and intention toward biofuel: Green way toward energy security, rural development and climate change mitigation. Renewable Energy, 2019, 130, 452-459.	4.3	29

#	Article	IF	Citations
19	Multi-risk approach and urban resilience. International Journal of Disaster Resilience in the Built Environment, $2016, 7, 114-132$.	0.7	27
20	Regional integration to support full renewable power deployment for Europe by 2050. Environmental Politics, 2011, 20, 727-742.	3.4	26
21	Social media as a driver of the use of renewable energy: The perceptions of instagram users in Iran. Energy Policy, 2022, 161, 112721.	4.2	23
22	The effectiveness of the social impact assessment (SIA) in energy transition management: Stakeholders' insights from renewable energy projects in Mexico. Energy Policy, 2020, 145, 111744.	4.2	22
23	Can the BestGrid Process Improve Stakeholder Involvement in Electricity Transmission Projects?. Energies, 2015, 8, 9407-9433.	1.6	21
24	De-risking policies as a substantial determinant of climate change mitigation costs in developing countries: Case study of the Middle East and North African region. Energy Policy, 2019, 127, 404-411.	4.2	21
25	Promoting Public Awareness of Carbon Capture and Storage Technologies in the Russian Federation: A System of Educational Activities. Energies, 2021, 14, 1408.	1.6	20
26	Some at Risk for COVID-19 Are Reluctant to Take Precautions, but Others Are Not: A Case From Rural in Southern Iran. Frontiers in Public Health, 2020, 8, 562300.	1.3	19
27	Multi-risk governance for natural hazards in Naples and Guadeloupe. Natural Hazards, 2014, 73, 1523.	1.6	18
28	Are Energy Security Concerns Dominating Environmental Concerns? Evidence from Stakeholder Participation Processes on Energy Transition in Jordan. Climate, 2018, 6, 88.	1.2	18
29	Approaches to Assessing the Strategic Sustainability of High-Risk Offshore Oil and Gas Projects. Journal of Marine Science and Engineering, 2020, 8, 995.	1.2	18
30	Employment under vertical and horizontal transfer of concentrated solar power technology to North African countries. Renewable and Sustainable Energy Reviews, 2014, 40, 1192-1201.	8.2	16
31	Governance Barriers to Renewable Energy in North Africa. International Spectator, 2014, 49, 50-65.	1.0	16
32	Understanding experts' views and risk perceptions on carbon capture and storage in three European countries. Geo Journal, 2017, 82, 185-200.	1.7	16
33	Participatory environmental governance of infrastructure projects affecting reindeer husbandry in the Arctic. Journal of Environmental Management, 2018, 223, 385-395.	3.8	16
34	Water–Energy Nexus: Addressing Stakeholder Preferences in Jordan. Sustainability, 2020, 12, 6168.	1.6	16
35	Discourses about energy transition in Austrian climate and energy model regions: Turning awareness into action. Energy and Environment, 2020, 31, 1473-1497.	2.7	16
36	Studying young people' views on deployment of renewable energy sources in Iran through the lenses of Social Cognitive Theory. AIMS Energy, 2018, 6, 216-228.	1.1	16

#	Article	IF	Citations
37	New Governance Challenges and Conflicts of the Energy Transition: Renewable Electricity Generation and Transmission as Contested Socio-technical Options. Lecture Notes in Energy, 2018, , 231-256.	0.2	14
38	Building plausible futures: Scenario-based strategic planning of industrial development of Kyrgyzstan. Futures, 2020, 124, 102646.	1.4	13
39	Public attitudes, co-production and polycentric governance in energy policy. Energy Policy, 2021, 153, 112241.	4.2	13
40	Evaluating the Downstream Development Strategy of Oil Companies: The Case of Rosneft. Resources, 2022, 11, 4.	1.6	13
41	A Multi-Criteria Framework for Pandemic Response Measures. Frontiers in Public Health, 2021, 9, 583706.	1.3	11
42	A value-driven approach to addressing misinformation in social media. Humanities and Social Sciences Communications, 2021, 8, .	1.3	10
43	Explaining intention to apply renewable energy in agriculture: the case of broiler farms in Southwest Iran. International Journal of Green Energy, 2022, 19, 836-846.	2.1	10
44	Economic and regulatory feasibility of solar PV in the Austrian multi-apartment housing sector. AIMS Energy, 2018, 6, 810-831.	1.1	10
45	Combating misinformation online: re-imagining social media for policy-making. Internet Policy Review, 2020, 9, .	1.8	10
46	Impacts of Earthquakes on Energy Security in the Eurasian Economic Union: Resilience of the Electricity Transmission Networks in Russia, Kazakhstan, and Kyrgyzstan. Geosciences (Switzerland), 2019, 9, 54.	1.0	9
47	Shaping the Future of Smart Dentistry: From Artificial Intelligence (AI) to Intelligence Augmentation (IA). IoT, 2021, 2, 510-523.	2.3	9
48	Multi-Risk Assessment and Governance. , 2017, , 357-381.		8
49	Linking Distributed Optimization Models for Food, Water, and Energy Security Nexus Management. Sustainability, 2022, 14, 1255.	1.6	8
50	Social Challenges of Electricity Transmission: Grid Deployment in Germany, the United Kingdom, and Belgium. IEEE Power and Energy Magazine, 2016, 14, 79-87.	1.6	7
51	Energy transition in the Austrian Climate and Energy model regions: a multi-risk participatory governance perspective on regional resilience. Procedia Engineering, 2018, 212, 15-21.	1.2	6
52	Deployment of Hydropower in Nepal: Multiple Stakeholders' Perspectives. Sustainability, 2020, 12, 6312.	1.6	6
53	WACC the Dog: The Effect of Financing Costs on the Levelized Cost of Solar PV Power. SSRN Electronic Journal, 2013, , .	0.4	4
54	A Multi-stakeholder Approach to Energy Transition Policy Formation in Jordan. Lecture Notes in Business Information Processing, 2018, , 190-202.	0.8	4

#	Article	IF	Citations
55	Methods and priorities for human resource planning in oil and gas projects in Russia and OPEC. OPEC Energy Review, 2021, 45, 365-389.	1.0	4
56	In Search of Perfect Foresight? Policy Bias, Management of Unknowns, and What Has Changed in Science Policy Since the Tohoku Disaster. Risk Analysis, 2017, 37, 219-230.	1.5	3
57	A model for power shortage minimization in electric power systems given constraints on controlled sections. Energy Reports, 2021, 7, 4577-4586.	2.5	3
58	Imagined inclusions into a â€~green modernisation': local politics and global visions of Morocco's renewable energy transition. Third World Quarterly, 2022, 43, 393-413.	1.3	3
59	Analyzing Russian Media Policy on Promoting Vaccination and Other COVID-19 Risk Mitigation Measures. Frontiers in Public Health, 2022, 10, 839386.	1.3	3
60	Transformation of the South African Energy System: Towards Participatory Governance. , 2018, , 139-158.		2
61	Extracting Information on Affective Computing Research from Data Analysis of Known Digital Platforms: Research into Emotional Artificial Intelligence. Digital, 2021, 1, 162-172.	1.1	2
62	Foreign Direct Investment in Russia: Stakeholders' Views and Perceptions. Journal of Economics and Behavioral Studies, 2016, 8, 184-193.	0.1	2
63	On the crossroad – renewable energy sources or shale oil? Understanding patterns of social attitudes in Jordan. OPEC Energy Review, 2022, 46, 3-30.	1.0	2
64	A Multicriteria Approach to Modelling Pandemic Response under Strong Uncertainty: A Case Study in Jordan. Sustainability, 2022, 14, 81.	1.6	2
65	Chapter 3 Vulnerability Assessment of Digitized Socio-technological Systems via Entropy. Lecture Notes in Computer Science, 2021, , 35-44.	1.0	1
66	Big Data and Energy Security: Impacts on Private Companies, National Economies and Societies. IoT, 2022, 3, 29-59.	2.3	1
67	Chapter 10 The Adequacy of Artificial Intelligence Tools to Combat Misinformation. Lecture Notes in Computer Science, 2021, , 172-198.	1.0	0
68	Renewable energy policy and mitigating the risks for investment., 2017,, 235-250.		0
69	Correction to: A Multi-stakeholder Approach to Energy Transition Policy Formation in Jordan. Lecture Notes in Business Information Processing, 2018, , E1-E1.	0.8	0
70	A Decision Tool for the Water-Energy Nexus in Jordan. Frontiers in Artificial Intelligence and Applications, 2020, , .	0.3	0
71	Impacts of Various Connectivity Processes in Central Asia on Sustainable Development of Kyrgyzstan. Sustainability, 2022, 14, 6998.	1.6	0