Ming Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/841091/publications.pdf

Version: 2024-02-01

28 1,146 19
papers citations h-ind

19 28
h-index g-index

29 29 all docs citations

29 times ranked 1443 citing authors

#	Article	IF	CITATIONS
1	An integrated omics analysis reveals the gene expression profiles of maize, castor bean, and rapeseed for seed oil biosynthesis. BMC Plant Biology, 2022, 22, 153.	3.6	6
2	Integrated strategies for increasing rapeseed yield. Trends in Plant Science, 2022, 27, 742-745.	8.8	16
3	Integrating unconditional and conditional QTLs to dissect the genetic basis of stem mechanical strength in Brassica napus L. Euphytica, 2021, 217, 1.	1.2	6
4	Hypothalamic and ovarian transcriptome profiling reveals potential candidate genes in low and high egg production of white Muscovy ducks (Cairina moschata). Poultry Science, 2021, 100, 101310.	3.4	31
5	CRISPR/Cas9â€targeted mutagenesis of the <i>BnaA03.BP</i> gene confers semiâ€dwarf and compact architecture to rapeseed (<i>Brassica napus</i> L.). Plant Biotechnology Journal, 2021, 19, 2383-2385.	8.3	26
6	Genomic insights into the origin, domestication and diversification of Brassica juncea. Nature Genetics, 2021, 53, 1392-1402.	21.4	66
7	Knockout of two <i>Bna<scp>MAX</scp>1</i> homologs by <scp>CRISPR</scp> /Cas9â€targeted mutagenesis improves plant architecture and increases yield in rapeseed (<i>Brassica napus</i> L.). Plant Biotechnology Journal, 2020, 18, 644-654.	8.3	117
8	Accurate Detection and Evaluation of the Gene-Editing Frequency in Plants Using Droplet Digital PCR. Frontiers in Plant Science, 2020, 11, 610790.	3.6	24
9	Fine-mapping and transcriptome analysis of a candidate gene controlling plant height in Brassica napus L Biotechnology for Biofuels, 2020, 13, 42.	6.2	25
10	Os <scp>PEX</scp> 5 regulates rice spikelet development through modulating jasmonic acid biosynthesis. New Phytologist, 2019, 224, 712-724.	7.3	36
11	Genome-wide identification of stress-associated proteins (SAP) with A20/AN1 zinc finger domains associated with abiotic stresses responses in Brassica napus. Environmental and Experimental Botany, 2019, 165, 108-119.	4.2	34
12	Three BnalAA7 homologs are involved in auxin/brassinosteroid-mediated plant morphogenesis in rapeseed (Brassica napus L.). Plant Cell Reports, 2019, 38, 883-897.	5 . 6	25
13	Genome-wide haplotype analysis improves trait predictions in Brassica napus hybrids. Plant Science, 2019, 283, 157-164.	3.6	26
14	A Critical Role of OsMADS1 in the Development of the Body of the Palea in Rice. Journal of Plant Biology, 2018, 61, 11-24.	2.1	8
15	Isolation and characterization of a spotted leaf 32 mutant with early leaf senescence and enhanced defense response in rice. Scientific Reports, 2017, 7, 41846.	3.3	37
16	A putative plastidial adenine nucleotide transporter, BRITTLE1-3, plays an essential role in regulating chloroplast development in rice (Oryza sativa L.). Journal of Plant Biology, 2017, 60, 493-505.	2.1	2
17	Genome-Wide Association Study Reveals Candidate Genes for Control of Plant Height, Branch Initiation Height and Branch Number in Rapeseed (Brassica napus L.). Frontiers in Plant Science, 2017, 8, 1246.	3.6	63
18	A rice White-stripe leaf3 (wsl3) mutant lacking an HD domain-containing protein affects chlorophyll biosynthesis and chloroplast development. Journal of Plant Biology, 2016, 59, 282-292.	2.1	14

#	Article	IF	CITATION
19	The <i>RICE MINUTE-LIKE1 </i> (<i>RML1 </i>) gene, encoding a ribosomal large subunit protein L3B, regulates leaf morphology and plant architecture in rice. Journal of Experimental Botany, 2016, 67, 3457-3469.	4.8	32
20	CRL6, a member of the CHD protein family, is required for crown root development in rice. Plant Physiology and Biochemistry, 2016, 105, 185-194.	5.8	42
21	WHITE PANICLE1, a Val-tRNA Synthetase Regulating Chloroplast Ribosome Biogenesis in Rice, Is Essential for Early Chloroplast Development. Plant Physiology, 2016, 170, 2110-2123.	4.8	74
22	<i>DEFORMED FLORAL ORGAN1</i> (<i>DFO1</i>) regulates floral organ identity by epigenetically repressing the expression of <i>OsMADS58</i> in rice (<i>Oryza sativa</i>). New Phytologist, 2015, 206, 1476-1490.	7.3	56
23	MicroRNA-23b Promotes Avian Leukosis Virus Subgroup J (ALV-J) Replication by Targeting IRF1. Scientific Reports, 2015, 5, 10294.	3.3	63
24	Dwarf and tiller-enhancing 1 regulates growth and development by influencing boron uptake in boron limited conditions in rice. Plant Science, 2015, 236, 18-28.	3.6	19
25	Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta, 2014, 239, 803-816.	3.2	65
26	<i><i><scp>FLOURY ENDOSPERM</scp>6</i> encodes a <scp>CBM</scp>48 domain ontaining protein involved in compound granule formation and starch synthesis in rice endosperm. Plant Journal, 2014, 77, 917-930.</i>	5.7	185
27	Gene SGL, encoding a kinesin-like protein with transactivation activity, is involved in grain length and plant height in rice. Plant Cell Reports, 2014, 33, 235-244.	5.6	32
28	Green-revertible Chlorina 1 (grc1) is required for the biosynthesis of chlorophyll and the early development of chloroplasts in rice. Journal of Plant Biology, 2013, 56, 326-335.	2.1	16