
David G Wilkinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/841065/publications.pdf Version: 2024-02-01

DAVID C. WILKINSON

#	Article	IF	CITATIONS
1	Eph Receptors and Ligands Comprise Two Major Specificity Subclasses and Are Reciprocally Compartmentalized during Embryogenesis. Neuron, 1996, 17, 9-19.	8.1	810
2	Expression pattern of the mouse T gene and its role in mesoderm formation. Nature, 1990, 343, 657-659.	27.8	799
3	Multiple roles of eph receptors and ephrins in neural development. Nature Reviews Neuroscience, 2001, 2, 155-164.	10.2	581
4	Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain. Nature, 1989, 341, 405-409.	27.8	565
5	Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse. Nature, 1989, 337, 461-464.	27.8	513
6	A distinct Hox code for the branchial region of the vertebrate head. Nature, 1991, 353, 861-864.	27.8	509
7	Eph receptors and ephrins restrict cell intermingling and communication. Nature, 1999, 400, 77-81.	27.8	446
8	In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature, 1999, 399, 267-271.	27.8	410
9	The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation. Cell, 1993, 72, 183-196.	28.9	303
10	Cell-Specific Information Processing in Segregating Populations of Eph Receptor Ephrin–Expressing Cells. Science, 2009, 326, 1502-1509.	12.6	209
11	Molecular Mechanisms of Cell Segregation and Boundary Formation in Development and Tumorigenesis. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008227-a008227.	5.5	161
12	Several receptor tyrosine kinase genes of the Eph family are segmentally expressed in the developing hindbrain. Mechanisms of Development, 1994, 47, 3-17.	1.7	142
13	Signalling between the hindbrain and paraxial tissues dictates neural crest migration pathways. Development (Cambridge), 2002, 129, 433-442.	2.5	128
14	Notch Activation Regulates the Segregation and Differentiation of Rhombomere Boundary Cells in the Zebrafish Hindbrain. Developmental Cell, 2004, 6, 539-550.	7.0	123
15	Function of the Eph-related kinase rtk1 in patterning of the zebrafish forebrain. Nature, 1996, 381, 319-322.	27.8	121
16	Progressive Spatial Restriction ofSek-1andKrox-20Gene Expression during Hindbrain Segmentation. Developmental Biology, 1996, 173, 26-38.	2.0	117
17	Wnt1 regulates neurogenesis and mediates lateral inhibition of boundary cell specification in the zebrafish hindbrain. Development (Cambridge), 2005, 132, 775-785.	2.5	102
18	Morpholino artifacts provide pitfalls and reveal a novel role for pro-apoptotic genes in hindbrain boundary development. Developmental Biology, 2011, 350, 279-289.	2.0	101

DAVID G WILKINSON

#	Article	IF	CITATIONS
19	Molecular mechanisms of segmental patterning in the vertebrate hindbrain and neural crest. BioEssays, 1993, 15, 499-505.	2.5	97
20	The Role of kreisler in Segmentation during Hindbrain Development. Developmental Biology, 1999, 211, 220-237.	2.0	94
21	Regulation of EphB2 activation and cell repulsion by feedback control of the MAPK pathway. Journal of Cell Biology, 2008, 183, 933-947.	5.2	76
22	Neuronal Regulation of the Spatial Patterning of Neurogenesis. Developmental Cell, 2010, 18, 136-147.	7.0	75
23	Mechanisms of boundary formation by Eph receptor and ephrin signaling. Developmental Biology, 2015, 401, 122-131.	2.0	75
24	Roles of Eph receptors and ephrins in neural crest pathfinding. Cell and Tissue Research, 1997, 290, 265-274.	2.9	68
25	Roles of Eph receptors and ephrins in segmental patterning. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 993-1002.	4.0	60
26	Stabilizing the regionalisation of the developing vertebrate central nervous system. BioEssays, 2002, 24, 427-438.	2.5	56
27	Cell segregation and border sharpening by Eph receptor–ephrin-mediated heterotypic repulsion. Journal of the Royal Society Interface, 2017, 14, 20170338.	3.4	50
28	An inducible transgene expression system for zebrafish and chick. Development (Cambridge), 2013, 140, 2235-2243.	2.5	49
29	A feedback loop mediated by degradation of an inhibitor is required to initiate neuronal differentiation. Genes and Development, 2010, 24, 206-218.	5.9	47
30	Eph-related receptors and their ligands: mediators of contact dependent cell interactions. Journal of Molecular Medicine, 1997, 75, 576-586.	3.9	44
31	Regulation of cell differentiation by Eph receptor and ephrin signaling. Cell Adhesion and Migration, 2014, 8, 339-348.	2.7	44
32	Signalling from hindbrain boundaries regulates neuronal clustering that patterns neurogenesis. Development (Cambridge), 2012, 139, 2978-2987.	2.5	43
33	Segmentation and patterning of the vertebrate hindbrain. Development (Cambridge), 2021, 148, .	2.5	41
34	Cell Identity Switching Regulated by Retinoic Acid Signaling Maintains Homogeneous Segments in the Hindbrain. Developmental Cell, 2018, 45, 606-620.e3.	7.0	40
35	A single cell transcriptome atlas of the developing zebrafish hindbrain. Development (Cambridge), 2020, 147, .	2.5	39
36	Enteric glia as a source of neural progenitors in adult zebrafish. ELife, 2020, 9, .	6.0	39

DAVID G WILKINSON

#	Article	IF	CITATIONS
37	Establishing neuronal circuitry: Hox genes make the connection. Genes and Development, 2004, 18, 1643-1648.	5.9	38
38	Signalling between the hindbrain and paraxial tissues dictates neural crest migration pathways. Development (Cambridge), 2002, 129, 433-42.	2.5	36
39	PHF2, a novel PHD finger gene located on human Chromosome 9q22. Mammalian Genome, 1999, 10, 294-298.	2.2	32
40	Inhibition of BMPs by follistatin is required for FGF3 expression and segmental patterning of the hindbrain. Developmental Biology, 2008, 324, 213-225.	2.0	31
41	Boundary cells regulate a switch in the expression of FGF3 in hindbrain rhombomeres. BMC Developmental Biology, 2009, 9, 16.	2.1	31
42	Distinct Regulatory Mechanisms Act to Establish and Maintain Pax3 Expression in the Developing Neural Tube. PLoS Genetics, 2013, 9, e1003811.	3.5	27
43	Comparative analysis of embryonic gene expression defines potential interaction sites forXenopus EphB4 receptors with ephrin-B ligands. Developmental Dynamics, 1999, 216, 361-373.	1.8	26
44	Actomyosin regulation by Eph receptor signaling couples boundary cell formation to border sharpness. ELife, 2019, 8, .	6.0	22
45	Role of forward and reverse signaling in Eph receptor and ephrin mediated cell segregation. Experimental Cell Research, 2019, 381, 57-65.	2.6	17
46	Characterisation of the Sek-1 receptor tyrosine kinase. FEBS Letters, 1995, 368, 353-357.	2.8	15
47	Homeobox genes and development of the vertebrate CNS. BioEssays, 1989, 10, 82-85.	2.5	14
48	A morphogenetic EphB/EphrinB code controls hepatopancreatic duct formation. Nature Communications, 2019, 10, 5220.	12.8	14
49	Segment Identity and Cell Segregation in the Vertebrate Hindbrain. Current Topics in Developmental Biology, 2016, 117, 581-596.	2.2	13
50	The Evolutionary History of Ephs and Ephrins: Toward Multicellular Organisms. Molecular Biology and Evolution, 2020, 37, 379-394.	8.9	13
51	A Mechanical Model of Cell Segregation Driven by Differential Adhesion. PLoS ONE, 2012, 7, e43226.	2.5	10
52	Interplay of Eph-Ephrin Signalling and Cadherin Function in Cell Segregation and Boundary Formation. Frontiers in Cell and Developmental Biology, 2021, 9, 784039.	3.7	9
53	Establishing sharp and homogeneous segments in the hindbrain. F1000Research, 2018, 7, 1268.	1.6	8
54	The promise of gene ablation. Nature, 1990, 347, 335-336.	27.8	4

4

#	Article	IF	CITATIONS
55	Cell identity switching in hindbrain segmentation. Mechanisms of Development, 2017, 145, S82.	1.7	1
56	Comparative analysis of embryonic gene expression defines potential interaction sites for Xenopus		1

56 EphB4 receptors with ephrin-B ligands. , 1999, 216, 361.