
Chaz Hyseni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8410532/publications.pdf Version: 2024-02-01

CHAZ HVSENI

#	Article	IF	CITATIONS
1	The evolution of phylogeographic data sets. Molecular Ecology, 2015, 24, 1164-1171.	2.0	119
2	Lineage fusion in <scp>G</scp> alápagos giant tortoises. Molecular Ecology, 2014, 23, 5276-5290.	2.0	59
3	Urban population genetics of slumâ€dwelling rats (<i><scp>R</scp>attus norvegicus</i>) in <scp>S</scp> alvador, <scp>B</scp> razil. Molecular Ecology, 2013, 22, 5056-5070.	2.0	52
4	Genetic rediscovery of an â€~extinct' Galápagos giant tortoise species. Current Biology, 2012, 22, R10-R11.	1.8	46
5	Implications of Microfauna-Host Interactions for Trypanosome Transmission Dynamics in Glossina fuscipes fuscipes in Uganda. Applied and Environmental Microbiology, 2012, 78, 4627-4637.	1.4	45
6	Phylogeography and Population Structure of Glossina fuscipes fuscipes in Uganda: Implications for Control of Tsetse. PLoS Neglected Tropical Diseases, 2010, 4, e636.	1.3	44
7	The genetic legacy of Lonesome George survives: Giant tortoises with Pinta Island ancestry identified in Galápagos. Biological Conservation, 2013, 157, 225-228.	1.9	39
8	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2010–31 January 2011. Molecular Ecology Resources, 2011, 11, 586-589.	2.2	38
9	Morphometrics Parallel Genetics in a Newly Discovered and Endangered Taxon of Galápagos Tortoise. PLoS ONE, 2009, 4, e6272.	1.1	34
10	Lineage identification of Galápagos tortoises in captivity worldwide. Animal Conservation, 2007, 10, 304-311.	1.5	33
11	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2012–30 November 2012. Molecular Ecology Resources, 2013, 13, 341-343.	2.2	33
12	Genetic diversity and population structure of Glossina pallidipes in Uganda and western Kenya. Parasites and Vectors, 2011, 4, 122.	1.0	32
13	Naturally rare versus newly rare: demographic inferences on two timescales inform conservation of Galápagos giant tortoises. Ecology and Evolution, 2015, 5, 676-694.	0.8	28
14	Temporal stability of Clossina fuscipes fuscipes populations in Uganda. Parasites and Vectors, 2011, 4, 19.	1.0	27
15	The population structure of Glossina fuscipes fuscipes in the Lake Victoria basin in Uganda: implications for vector control. Parasites and Vectors, 2012, 5, 222.	1.0	27
16	Extending phylogeography to account for lineage fusion. Journal of Biogeography, 2019, 46, 268-278.	1.4	23
17	The importance of blue and green landscape connectivity for biodiversity in urban ponds. Basic and Applied Ecology, 2021, 57, 129-145.	1.2	23
18	Spatio-temporal distribution of Spiroplasma infections in the tsetse fly (Glossina fuscipes fuscipes) in northern Uganda. PLoS Neglected Tropical Diseases, 2019, 13, e0007340.	1.3	22

CHAZ HYSENI

#	Article	IF	CITATIONS
19	Genetically DistinctGlossina fuscipes fuscipesPopulations in the Lake Kyoga Region of Uganda and Its Relevance for Human African Trypanosomiasis. BioMed Research International, 2013, 2013, 1-12.	0.9	17
20	Ecological Drivers of Species Distributions and Niche Overlap for Three Subterranean Termite Species in the Southern Appalachian Mountains, USA. Insects, 2019, 10, 33.	1.0	12
21	Identification of Eastern United States Reticulitermes Termite Species via PCR-RFLP, Assessed Using Training and Test Data. Insects, 2015, 6, 524-537.	1.0	11
22	The population genomics of multiple tsetse fly (Glossina fuscipes fuscipes) admixture zones in Uganda. Molecular Ecology, 2019, 28, 66-85.	2.0	11
23	The role of glacialâ€interglacial climate change in shaping the genetic structure of eastern subterranean termites in the southern Appalachian Mountains, USA. Ecology and Evolution, 2019, 9, 4621-4636.	0.8	10
24	Habitat fragmentation and the genetic structure of the Amazonian palm Mauritia flexuosa L.f. (Arecaceae) on the island of Trinidad. Conservation Genetics, 2014, 15, 355-362.	0.8	9
25	A spatial genetics approach to inform vector control of tsetse flies (<i>Glossina fuscipes) Tj ETQq1 1 0.784314 rg</i>	gBT /Overl 0.8	ock 10 Tf 50
26	Trophic interactions among dead-wood-dependent forest arthropods in the southern Appalachian Mountains, USA. Food Webs, 2019, 18, e00112.	0.5	8
27	Mitochondrial DNA sequence divergence and diversity of Glossina fuscipes fuscipes in the Lake Victoria basin of Uganda: implications for control. Parasites and Vectors, 2015, 8, 385.	1.0	7
28	Development of microsatellite markers for parentage analysis in the great tinamou (<i>Tinamus) Tj ETQq0 0 0 rgl</i>	BT/Overlo 2.2	ock_10 Tf 50 3
29	Isolation of 13 novel highly polymorphic microsatellite loci for the Amazonian Palm Mauritia flexuosa L.f. (Arecaceae). Conservation Genetics Resources, 2012, 4, 355-357.	0.4	6
30	A machine learning approach to integrating genetic and ecological data in tsetse flies (<i>Glossina) Tj ETQq0 0 0 1762-1777.</i>	rgBT /Ove 1.5	erlock 10 Tf 5 6
31	Burrow Densities of Primary Burrowing Crayfishes in Relation to Prescribed Fire and Mechanical Vegetation Treatments. Water (Switzerland), 2021, 13, 1854.	1.2	5
32	Efficient summary statistics for detecting lineage fusion from phylogeographic datasets. Journal of Biogeography, 2020, 47, 2129-2140.	1.4	4
33	Is Phylogeographic Congruence Predicted by Historical Habitat Stability, or Ecological Co-associations?. Insect Systematics and Diversity, 2021, 5, .	0.7	3
34	Müllerian mimicry and the coloration patterns of sympatric coral snakes. Biological Journal of the	0.7	2