Raymond F Regan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8410461/publications.pdf Version: 2024-02-01

RAVMOND F RECAN

#	Article	IF	CITATIONS
1	Platelets as drivers of ischemia/reperfusion injury after stroke. Blood Advances, 2021, 5, 1576-1584.	2.5	23
2	Effect of hemopexin treatment on outcome after intracerebral hemorrhage in mice. Brain Research, 2021, 1765, 147507.	1.1	8
3	CXCL12-CXCR4 Interplay Facilitates Palatal Osteogenesis in Mice. Frontiers in Cell and Developmental Biology, 2020, 8, 771.	1.8	7
4	Deferoxamine deconditioning increases neuronal vulnerability to hemoglobin. Experimental Cell Research, 2020, 390, 111926.	1.2	3
5	Antithrombotic effects of heme-degrading and heme-binding proteins. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H671-H681.	1.5	14
6	Rapid loss of perihematomal cell viability in the collagenase intracerebral hemorrhage model. Brain Research, 2019, 1711, 91-96.	1.1	5
7	Hemopexin increases the neurotoxicity of hemoglobin when haptoglobin is absent. Journal of Neurochemistry, 2018, 145, 464-473.	2.1	22
8	Protective effect of vitreous against hemoglobin neurotoxicity. Biochemical and Biophysical Research Communications, 2018, 503, 152-156.	1.0	5
9	Astrocyte heme oxygenase-1 reduces mortality and improves outcome after collagenase-induced intracerebral hemorrhage. Neurobiology of Disease, 2017, 102, 140-146.	2.1	54
10	Chemokine Signaling during Midline Epithelial Seam Disintegration Facilitates Palatal Fusion. Frontiers in Cell and Developmental Biology, 2017, 5, 94.	1.8	5
11	Targeting the Nrf2-Heme Oxygenase-1 Axis after Intracerebral Hemorrhage. Current Pharmaceutical Design, 2017, 23, 2226-2237.	0.9	47
12	Haptoglobin increases the vulnerability of <scp>CD</scp> 163â€expressing neurons to hemoglobin. Journal of Neurochemistry, 2016, 139, 586-595.	2.1	44
13	Dysregulation of the haem-haemopexin axis is associated with severe malaria in a case–control study of Ugandan children. Malaria Journal, 2015, 14, 511.	0.8	21
14	Solid microparticles based on chitosan or methyl-β-cyclodextrin: A first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate. Journal of Controlled Release, 2015, 201, 68-77.	4.8	116
15	Astrocyte Overexpression of Heme Oxygenase-1 Improves Outcome After Intracerebral Hemorrhage. Stroke, 2015, 46, 1093-1098.	1.0	49
16	Targeting Heme Oxygenase after Intracerebral Hemorrhage. Therapeutic Targets for Neurological Diseases, 2015, 2, .	2.2	13
17	Curcumin-Induced Heme Oxygenase-1 Expression Prevents H2O2-Induced Cell Death in Wild Type and Heme Oxygenase-2 Knockout Adipose-Derived Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2014, 15, 17974-17999.	1.8	41
18	Systemic hemin therapy attenuates blood–brain barrier disruption after intracerebral hemorrhage. Neurobiology of Disease, 2014, 70, 245-251.	2.1	38

RAYMOND F REGAN

#	Article	IF	CITATIONS
19	Neuroprotective effect of heme oxygenase-2 knockout in the blood injection model of intracerebral hemorrhage. BMC Research Notes, 2014, 7, 561.	0.6	17
20	A rapid fluorescent method to quantify neuronal loss after experimental intracerebral hemorrhage. Journal of Neuroscience Methods, 2013, 216, 128-136.	1.3	10
21	Effect of Iron Chelators on Methemoglobin and Thrombin Preconditioning. Translational Stroke Research, 2012, 3, 452-459.	2.3	17
22	Hemopexin decreases hemin accumulation and catabolism by neural cells. Neurochemistry International, 2012, 60, 488-494.	1.9	12
23	Apotransferrin protects cortical neurons from hemoglobin toxicity. Neuropharmacology, 2011, 60, 423-431.	2.0	24
24	Iron accumulation and neurotoxicity in cortical cultures treated with holotransferrin. Free Radical Biology and Medicine, 2011, 51, 1966-1974.	1.3	11
25	Increased striatal injury and behavioral deficits after intracerebral hemorrhage in hemopexin knockout mice. Journal of Neurosurgery, 2011, 114, 1159-1167.	0.9	65
26	lron regulatory protein-2 knockout increases perihematomal ferritin expression and cell viability after intracerebral hemorrhage. Brain Research, 2010, 1337, 95-103.	1.1	16
27	Accelerated hemolysis and neurotoxicity in neuronâ€gliaâ€blood clot coâ€cultures. Journal of Neurochemistry, 2010, 114, 1063-1073.	2.1	32
28	Heme Oxygenase-2 Deletion Causes Endothelial Cell Activation Marked by Oxidative Stress, Inflammation, and Angiogenesis. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 925-932.	1.3	55
29	Minocycline attenuates iron neurotoxicity in cortical cell cultures. Biochemical and Biophysical Research Communications, 2009, 386, 322-326.	1.0	57
30	Heme oxygenase activity and hemoglobin neurotoxicity are attenuated by inhibitors of the MEK/ERK pathway. Neuropharmacology, 2009, 56, 922-928.	2.0	22
31	Increasing expression of H- or L-ferritin protects cortical astrocytes from hemin toxicity. Free Radical Research, 2009, 43, 613-621.	1.5	15
32	Activation of extracellular signal-regulated kinases potentiates hemin toxicity in astrocyte cultures. Journal of Neurochemistry, 2008, 79, 545-555.	2.1	57
33	Carbon monoxide donors or heme oxygenase-1 (HO-1) overexpression blocks interleukin-18-mediated NF-κB–PTEN-dependent human cardiac endothelial cell death. Free Radical Biology and Medicine, 2008, 44, 284-298.	1.3	49
34	Neurons lacking iron regulatory protein-2 are highly resistant to the toxicity of hemoglobin. Neurobiology of Disease, 2008, 31, 242-249.	2.1	33
35	Iron regulatory proteins increase neuronal vulnerability to hydrogen peroxide. Biochemical and Biophysical Research Communications, 2008, 375, 6-10.	1.0	14
36	Hemoglobin Neurotoxicity is Attenuated by Inhibitors of the Protein Kinase CK2 Independent of Heme Oxygenase Activity. Current Neurovascular Research, 2008, 5, 193-198.	0.4	7

RAYMOND F REGAN

#	Article	IF	CITATIONS
37	Attenuation of oxidative injury after induction of experimental intracerebral hemorrhage in heme oxygenase–2 knockout mice. Journal of Neurosurgery, 2007, 106, 428-435.	0.9	45
38	Time course of increased heme oxygenase activity and expression after experimental intracerebral hemorrhage: correlation with oxidative injury. Journal of Neurochemistry, 2007, 103, 2015-2021.	2.1	42
39	Astrocyte-specific heme oxygenase-1 hyperexpression attenuates heme-mediated oxidative injury. Neurobiology of Disease, 2007, 26, 688-695.	2.1	28
40	Effect of heme oxygenase-1 on the vulnerability of astrocytes and neurons to hemoglobin. Biochemical and Biophysical Research Communications, 2006, 350, 233-237.	1.0	44
41	Inhibition of the ERK/MAP kinase pathway attenuates heme oxygenase-1 expression and heme-mediated neuronal injury. Neuroscience Letters, 2006, 398, 230-234.	1.0	29
42	HO-2 provides endogenous protection against oxidative stress and apoptosis caused by TNF-α in cerebral vascular endothelial cells. American Journal of Physiology - Cell Physiology, 2006, 291, C897-C908.	2.1	106
43	Glutamate induces oxidative stress and apoptosis in cerebral vascular endothelial cells: contributions of HO-1 and HO-2 to cytoprotection. American Journal of Physiology - Cell Physiology, 2006, 290, C1399-C1410.	2.1	161
44	Hemoglobin and Neurotoxicity. , 2006, , 227-234.		1
45	HOâ€2 gene deletion increases NFkB activation and sensitizes cerebral microvascular endothelial cells to TNFâ€alphaâ€induced apoptosis FASEB Journal, 2006, 20, A292.	0.2	0
46	Effect of Targeted Deletion of the Heme Oxygenase-2 Gene on Hemoglobin Toxicity in the Striatum. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 1466-1475.	2.4	39
47	Cultured astrocytes from heme oxygenase-1 knockout mice are more vulnerable to heme-mediated oxidative injury. Journal of Neuroscience Research, 2005, 82, 802-810.	1.3	53
48	Increasing Expression of Heme Oxygenase-1 by Proteasome Inhibition Protects Astrocytes from Heme-mediated Oxidative Injury. Current Neurovascular Research, 2005, 2, 189-196.	0.4	51
49	The oxidative neurotoxicity of clioquinol. Neuropharmacology, 2005, 49, 687-694.	2.0	54
50	The Neurotoxic Effect of Sickle Cell Hemoglobin. Free Radical Research, 2004, 38, 431-437.	1.5	16
51	Heme oxygenase-2 gene deletion attenuates oxidative stress in neurons exposed to extracellular hemin. BMC Neuroscience, 2004, 5, 34.	0.8	59
52	Heme oxygenase-2 gene deletion increases astrocyte vulnerability to hemin. Biochemical and Biophysical Research Communications, 2004, 318, 88-94.	1.0	43
53	Adenoviral transfer of the heme oxygenase-1 gene protects striatal astrocytes from heme-mediated oxidative injury. Neurobiology of Disease, 2004, 17, 179-187.	2.1	26
54	Heme oxygenase-2 knockout neurons are less vulnerable to hemoglobin toxicity. Free Radical Biology and Medicine, 2003, 35, 872-881.	1.3	82

RAYMOND F REGAN

#	Article	IF	CITATIONS
55	Hemin induces an iron-dependent, oxidative injury to human neuron-like cells. Journal of Neuroscience Research, 2003, 73, 113-121.	1.3	128
56	Delayed Treatment of Hemoglobin Neurotoxicity. Journal of Neurotrauma, 2003, 20, 111-120.	1.7	63
57	Activation of extracellular signal-regulated kinases potentiates hemin toxicity in astrocyte cultures. Journal of Neurochemistry, 2002, 80, 720-720.	2.1	0
58	Heme oxygenase-1 induction protects murine cortical astrocytes from hemoglobin toxicity. Neuroscience Letters, 2000, 282, 1-4.	1.0	67
59	Extracellular reduced glutathione increases neuronal vulnerability to combined chemical hypoxia and glucose deprivation. Brain Research, 1999, 817, 145-150.	1.1	22
60	Toxic Effect of Hemoglobin on Spinal Cord Neurons in Culture. Journal of Neurotrauma, 1998, 15, 645-653.	1.7	64
61	The Effect of Magnesium on Oxidative Neuronal Injury In Vitro. Journal of Neurochemistry, 1998, 70, 77-85.	2.1	81
62	Hemoglobin Potentiates Excitotoxic Injury in Cortical Cell Culture. Journal of Neurotrauma, 1996, 13, 223-231.	1.7	89
63	The effect of NMDA, AMPA/kainate, and calcium channel antagonists on traumatic cortical neuronal injury in culture. Brain Research, 1994, 633, 236-242.	1.1	90
64	Neurotoxicity of hemoglobin in cortical cell culture. Neuroscience Letters, 1993, 153, 219-222.	1.0	173