Xue-Feng Yu

List of Publications by Citations

Source: https://exaly.com/author-pdf/8409949/xue-feng-yu-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

236 58 13,444 111 h-index g-index citations papers 16,052 6.8 252 9.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
236	Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. Angewandte Chemie - International Edition, 2015 , 54, 11526-30	16.4	745
235	Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. <i>Optics Express</i> , 2015 , 23, 12823-33	3.3	734
234	From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics. <i>Advanced Functional Materials</i> , 2015 , 25, 6996-7002	15.6	725
233	Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. <i>Nature Communications</i> , 2016 , 7, 12967	17.4	659
232	Surface Coordination of Black Phosphorus for Robust Air and Water Stability. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 5003-7	16.4	406
231	Metal-Ion-Modified Black Phosphorus with Enhanced Stability and Transistor Performance. <i>Advanced Materials</i> , 2017 , 29, 1703811	24	353
230	Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. <i>Optics Express</i> , 2015 , 23, 20030-9	3.3	322
229	Enhanced Microwave Absorption Performance from Magnetic Coupling of Magnetic Nanoparticles Suspended within Hierarchically Tubular Composite. <i>Advanced Functional Materials</i> , 2019 , 29, 1901448	15.6	321
228	Solvothermal Synthesis and Ultrafast Photonics of Black Phosphorus Quantum Dots. <i>Advanced Optical Materials</i> , 2016 , 4, 1223-1229	8.1	267
227	Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. <i>Biomaterials</i> , 2014 , 35, 1954-66	15.6	226
226	Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. <i>Biomaterials</i> , 2016 , 74, 144-54	15.6	209
225	MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. <i>Chemical Engineering Journal</i> , 2020 , 383, 123099	14.7	207
224	Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. <i>Angewandte Chemie</i> , 2015 , 127, 11688-11692	3.6	201
223	Black-Phosphorus-Incorporated Hydrogel as a Sprayable and Biodegradable Photothermal Platform for Postsurgical Treatment of Cancer. <i>Advanced Science</i> , 2018 , 5, 1700848	13.6	199
222	TiL -Coordinated Black Phosphorus Quantum Dots as an Efficient Contrast Agent for In Vivo Photoacoustic Imaging of Cancer. <i>Small</i> , 2017 , 13, 1602896	11	198
221	Dopant-controlled synthesis of water-soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging. <i>Nano Research</i> , 2010 , 3, 51-60	10	196
220	Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. <i>Nanoscale</i> , 2017 , 9, 17859-17864	7.7	174

(2016-2016)

219	Metabolizable Ultrathin Bi2 Se3 Nanosheets in Imaging-Guided Photothermal Therapy. <i>Small</i> , 2016 , 12, 4136-45	11	168
218	Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing. <i>Biomaterials</i> , 2016 , 78, 27-39	15.6	167
217	Boosted Interfacial Polarization from Multishell TiO @Fe O @PPy Heterojunction for Enhanced Microwave Absorption. <i>Small</i> , 2019 , 15, e1902885	11	167
216	In-Plane Black Phosphorus/Dicobalt Phosphide Heterostructure for Efficient Electrocatalysis. Angewandte Chemie - International Edition, 2018 , 57, 2600-2604	16.4	159
215	Synthesis of AulīdS CoreBhell Hetero-Nanorods with Efficient Exciton Plasmon Interactions. Advanced Functional Materials, 2011 , 21, 1788-1794	15.6	158
214	A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. <i>Nature Communications</i> , 2018 , 9, 5012	17.4	148
213	Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays. <i>Advanced Materials</i> , 2016 , 28, 2511-7	24	134
212	The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. <i>Biomaterials</i> , 2008 , 29, 4170-6	15.6	134
211	Oriented Polarization Tuning Broadband Absorption from Flexible Hierarchical ZnO Arrays Vertically Supported on Carbon Cloth. <i>Small</i> , 2019 , 15, e1900900	11	133
210	Highly Efficient Fluorescence of NdF3/SiO2 Core/Shell Nanoparticles and the Applications for in vivo NIR Detection. <i>Advanced Materials</i> , 2008 , 20, 4118-4123	24	130
209	Stable and Multifunctional Dye-Modified Black Phosphorus Nanosheets for Near-Infrared Imaging-Guided Photothermal Therapy. <i>Chemistry of Materials</i> , 2017 , 29, 7131-7139	9.6	125
208	Designing Core-Shell Gold and Selenium Nanocomposites for Cancer Radiochemotherapy. <i>ACS Nano</i> , 2017 , 11, 4848-4858	16.7	124
207	Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 3007-3013	7.1	121
206	Enhanced Cytosolic Delivery and Release of CRISPR/Cas9 by Black Phosphorus Nanosheets for Genome Editing. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 10268-10272	16.4	106
205	Morphology-controlled synthesis and excellent microwave absorption performance of ZnCoO nanostructures via a self-assembly process of flake units. <i>Nanoscale</i> , 2019 , 11, 2694-2702	7.7	103
204	Two-dimensional black phosphorus: Synthesis, modification, properties, and applications. <i>Materials Science and Engineering Reports</i> , 2017 , 120, 1-33	30.9	102
203	Improved Biocompatibility of Black Phosphorus Nanosheets by Chemical Modification. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14488-14493	16.4	101
202	Black Phosphorus Based Photocathodes in Wideband Bifacial Dye-Sensitized Solar Cells. <i>Advanced Materials</i> , 2016 , 28, 8937-8944	24	100

201	Neurotoxin-conjugated upconversion nanoprobes for direct visualization of tumors under near-infrared irradiation. <i>Biomaterials</i> , 2010 , 31, 8724-31	15.6	100
200	Surface chemistry but not aspect ratio mediates the biological toxicity of gold nanorods in vitro and in vivo. <i>Scientific Reports</i> , 2015 , 5, 11398	4.9	99
199	PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 5391-9	9.5	93
198	Surface Coordination of Black Phosphorus for Robust Air and Water Stability. <i>Angewandte Chemie</i> , 2016 , 128, 5087-5091	3.6	92
197	Broadband spatial self-phase modulation of black phosphorous. <i>Optics Letters</i> , 2016 , 41, 1704-7	3	87
196	Interrogating the Escherichia coli cell cycle by cell dimension perturbations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 15000-15005	11.5	84
195	Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots. <i>Nanoscale</i> , 2017 , 9, 4683-4690	7.7	83
194	3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. <i>Chemical Engineering Journal</i> , 2020 , 379, 122241	14.7	79
193	A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-Co	oV-2	77
192	Black Phosphorus/Platinum Heterostructure: A Highly Efficient Photocatalyst for Solar-Driven Chemical Reactions. <i>Advanced Materials</i> , 2018 , 30, e1803641	24	77
191	Symmetric and asymmetric Au-AgCdSe hybrid nanorods. <i>Nano Letters</i> , 2012 , 12, 5281-6	11.5	75
190	Property-Activity Relationship of Black Phosphorus at the Nano-Bio Interface: From Molecules to Organisms. <i>Chemical Reviews</i> , 2020 , 120, 2288-2346	68.1	73
189	Biodegradable near-infrared-photoresponsive shape memory implants based on black phosphorus nanofillers. <i>Biomaterials</i> , 2018 , 164, 11-21	15.6	73
188	Black Phosphorus: Bioactive Nanomaterials with Inherent and Selective Chemotherapeutic Effects. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 769-774	16.4	73
187	Near-infrared light-triggered drug delivery system based on black phosphorus for inlyivo bone regeneration. <i>Biomaterials</i> , 2018 , 179, 164-174	15.6	72
186	Stable black phosphorus/BiO heterostructures for synergistic cancer radiotherapy. <i>Biomaterials</i> , 2018 , 171, 12-22	15.6	70
185	Sequentially Triggered Delivery System of Black Phosphorus Quantum Dots with Surface Charge-Switching Ability for Precise Tumor Radiosensitization. <i>ACS Nano</i> , 2018 , 12, 12401-12415	16.7	70
184	One-pot synthesis of CdSEeduced graphene oxide 3D composites with enhanced photocatalytic properties. <i>CrystEngComm</i> , 2014 , 16, 399-405	3.3	67

(2011-2019)

183	Conductive-network enhanced microwave absorption performance from carbon coated defect-rich Fe2O3 anchored on multi-wall carbon nanotubes. <i>Carbon</i> , 2019 , 155, 298-308	10.4	66	
182	Bimodal optical diagnostics of oral cancer based on Rose Bengal conjugated gold nanorod platform. <i>Biomaterials</i> , 2013 , 34, 4274-83	15.6	64	
181	Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo. <i>Journal of Biomedical Optics</i> , 2007 , 12, 014008	3.5	63	
180	A Novel Hybrid-Layered Organic Phototransistor Enables Efficient Intermolecular Charge Transfer and Carrier Transport for Ultrasensitive Photodetection. <i>Advanced Materials</i> , 2019 , 31, e1900763	24	61	
179	Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging. <i>ACS Nano</i> , 2010 , 4, 5003-10	16.7	61	
178	Few-Layered Black Phosphorus: From Fabrication and Customization to Biomedical Applications. <i>Small</i> , 2018 , 14, 1702830	11	56	
177	Linker-free covalent immobilization of heparin, SDF-1‡and CD47 on PTFE surface for antithrombogenicity, endothelialization and anti-inflammation. <i>Biomaterials</i> , 2017 , 140, 201-211	15.6	55	
176	A Low-Cost Metal-Free Photocatalyst Based on Black Phosphorus. <i>Advanced Science</i> , 2019 , 6, 1801321	13.6	55	
175	Efficient Enrichment and Self-Assembly of Hybrid Nanoparticles into Removable and Magnetic SERS Substrates for Sensitive Detection of Environmental Pollutants. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 7472-7480	9.5	54	
174	Cell-borne 2D nanomaterials for efficient cancer targeting and photothermal therapy. <i>Biomaterials</i> , 2017 , 133, 37-48	15.6	54	
173	Optical properties of Au/Ag core/shell nanoshuttles. <i>Optics Express</i> , 2008 , 16, 14288-93	3.3	54	
172	Electrostatic Self-Assembly of TiCT MXene and Gold Nanorods as an Efficient Surface-Enhanced Raman Scattering Platform for Reliable and High-Sensitivity Determination of Organic Pollutants. ACS Sensors, 2019 , 4, 2303-2310	9.2	53	
171	Paper-based plasmonic platform for sensitive, noninvasive, and rapid cancer screening. <i>Biosensors and Bioelectronics</i> , 2014 , 54, 128-34	11.8	52	
170	Black Phosphorus-Based Multimodal Nanoagent: Showing Targeted Combinatory Therapeutics against Cancer Metastasis. <i>Nano Letters</i> , 2019 , 19, 5587-5594	11.5	51	
169	Rapid Activation of Platinum with Black Phosphorus for Efficient Hydrogen Evolution. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 19060-19066	16.4	51	
168	Decorated ultrathin bismuth selenide nanosheets as targeted theranostic agents for in vivo imaging guided cancer radiation therapy. <i>NPG Asia Materials</i> , 2017 , 9, e439-e439	10.3	51	
167	Ferromagnetic Co20Ni80 nanoparticles encapsulated inside reduced graphene oxide layers with superior microwave absorption performance. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 2943-2953	7.1	51	
166	Synthesis of Highly Luminescent and Anion-Exchangeable Cerium-Doped Layered Yttrium Hydroxides for Sensing and Photofunctional Applications. <i>Advanced Functional Materials</i> , 2011 , 21, 438	8 ¹ 56 8-4396	50	

165	Lanthanide-Coordinated Black Phosphorus. Small, 2018, 14, e1801405	11	49
164	Indocyanine green-loaded gold nanostars for sensitive SERS imaging and subcellular monitoring of photothermal therapy. <i>Nanoscale</i> , 2017 , 9, 11888-11901	7.7	48
163	Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS. <i>Nanoscale</i> , 2013 , 5, 5368-74	7.7	48
162	Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future. <i>Materials</i> , 2020 , 13,	3.5	48
161	Different-sized black phosphorus nanosheets with good cytocompatibility and high photothermal performance. <i>RSC Advances</i> , 2017 , 7, 14618-14624	3.7	47
160	Black phosphorus: a two-dimensional reductant for in situ nanofabrication. <i>Npj 2D Materials and Applications</i> , 2017 , 1,	8.8	44
159	Optical and Optoelectronic Properties of Black Phosphorus and Recent Photonic and Optoelectronic Applications. <i>Small Methods</i> , 2019 , 3, 1900165	12.8	43
158	In-Plane Black Phosphorus/Dicobalt Phosphide Heterostructure for Efficient Electrocatalysis. <i>Angewandte Chemie</i> , 2018 , 130, 2630-2634	3.6	43
157	Homogeneous immunoassay based on two-photon excitation fluorescence resonance energy transfer. <i>Analytical Chemistry</i> , 2008 , 80, 7735-41	7.8	41
	No. 1 1 1 1 Con II Col I November Cine descendent Catalonicité. Coll Habele and Diadiateit vision		
156	Metabolizable Small Gold Nanorods: Size-dependent Cytotoxicity, Cell Uptake and Biodistribution. <i>ACS Biomaterials Science and Engineering</i> , 2016 , 2, 789-797	5.5	41
156 155		5·5 10.9	
	ACS Biomaterials Science and Engineering, 2016, 2, 789-797 Mapping the elastic properties of two-dimensional MoS2 via bimodal atomic force microscopy and		
155	ACS Biomaterials Science and Engineering, 2016, 2, 789-797 Mapping the elastic properties of two-dimensional MoS2 via bimodal atomic force microscopy and finite element simulation. Npj Computational Materials, 2018, 4, Synthesis of gold/rare-earth-vanadate core/shell nanorods for integrating plasmon resonance and	10.9	41
155 154	ACS Biomaterials Science and Engineering, 2016, 2, 789-797 Mapping the elastic properties of two-dimensional MoS2 via bimodal atomic force microscopy and finite element simulation. Npj Computational Materials, 2018, 4, Synthesis of gold/rare-earth-vanadate core/shell nanorods for integrating plasmon resonance and fluorescence. Nano Research, 2015, 8, 2548-2561 Synthesis of high-quality black phosphorus sponges for all-solid-state supercapacitors. Materials	10.9	41 40 39
155 154 153	ACS Biomaterials Science and Engineering, 2016, 2, 789-797 Mapping the elastic properties of two-dimensional MoS2 via bimodal atomic force microscopy and finite element simulation. Npj Computational Materials, 2018, 4, Synthesis of gold/rare-earth-vanadate core/shell nanorods for integrating plasmon resonance and fluorescence. Nano Research, 2015, 8, 2548-2561 Synthesis of high-quality black phosphorus sponges for all-solid-state supercapacitors. Materials Horizons, 2019, 6, 176-181 Photoelectrochemical Synthesis of Ammonia with Black Phosphorus. Advanced Functional Materials,	10.9	41 40 39
155 154 153	ACS Biomaterials Science and Engineering, 2016, 2, 789-797 Mapping the elastic properties of two-dimensional MoS2 via bimodal atomic force microscopy and finite element simulation. Npj Computational Materials, 2018, 4, Synthesis of gold/rare-earth-vanadate core/shell nanorods for integrating plasmon resonance and fluorescence. Nano Research, 2015, 8, 2548-2561 Synthesis of high-quality black phosphorus sponges for all-solid-state supercapacitors. Materials Horizons, 2019, 6, 176-181 Photoelectrochemical Synthesis of Ammonia with Black Phosphorus. Advanced Functional Materials, 2020, 30, 2002731 Phase-Changing Microcapsules Incorporated with Black Phosphorus for Efficient Solar Energy	10.9 10 14.4 15.6 13.6	41 40 39 38
155 154 153 152 151	ACS Biomaterials Science and Engineering, 2016, 2, 789-797 Mapping the elastic properties of two-dimensional MoS2 via bimodal atomic force microscopy and finite element simulation. Npj Computational Materials, 2018, 4, Synthesis of gold/rare-earth-vanadate core/shell nanorods for integrating plasmon resonance and fluorescence. Nano Research, 2015, 8, 2548-2561 Synthesis of high-quality black phosphorus sponges for all-solid-state supercapacitors. Materials Horizons, 2019, 6, 176-181 Photoelectrochemical Synthesis of Ammonia with Black Phosphorus. Advanced Functional Materials, 2020, 30, 2002731 Phase-Changing Microcapsules Incorporated with Black Phosphorus for Efficient Solar Energy Storage. Advanced Science, 2020, 7, 2000602 Atomically Dispersed Indium Sites for Selective CO Electroreduction to Formic Acid. ACS Nano,	10.9 10 14.4 15.6	41 40 39 38 38

(2020-2018)

147	Synthesis of lipid-black phosphorus quantum dot bilayer vesicles for near-infrared-controlled drug release. <i>Chemical Communications</i> , 2018 , 54, 6060-6063	5.8	37
146	Edge-Rich Black Phosphorus for Photocatalytic Nitrogen Fixation. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1052-1058	6.4	36
145	Synthesis of different-sized gold nanostars for Raman bioimaging and photothermal therapy in cancer nanotheranostics. <i>Science China Chemistry</i> , 2017 , 60, 1219-1229	7.9	36
144	Tri-phase all-optical switching and broadband nonlinear optical response in BiSe nanosheets. <i>Optics Express</i> , 2017 , 25, 18346-18354	3.3	36
143	Crystal structure and optical properties of silver nanorings. <i>Applied Physics Letters</i> , 2009 , 94, 153102	3.4	36
142	Black phosphorus integrated tilted fiber grating for ultrasensitive heavy metal sensing. <i>Sensors and Actuators B: Chemical</i> , 2018 , 257, 1093-1098	8.5	36
141	Synthesis of bright upconversion submicrocrystals for high-contrast imaging of latent-fingerprints with cyanoacrylate fuming. <i>RSC Advances</i> , 2015 , 5, 79525-79531	3.7	35
140	Crystalline Red Phosphorus Nanoribbons: Large-Scale Synthesis and Electrochemical Nitrogen Fixation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14383-14387	16.4	35
139	Fluorescence analysis with quantum dot probes for hepatoma under one- and two-photon excitation. <i>Journal of Fluorescence</i> , 2007 , 17, 243-7	2.4	35
138	Direct Synthesis of Metal-Doped Phosphorene with Enhanced Electrocatalytic Hydrogen Evolution. Small Methods, 2019 , 3, 1900083	12.8	34
137	Biodegradable Bi O Se Quantum Dots for Photoacoustic Imaging-Guided Cancer Photothermal Therapy. <i>Small</i> , 2020 , 16, e1905208	11	34
136	Molybdenum diselenide Iblack phosphorus heterostructures for electrocatalytic hydrogen evolution. <i>Applied Surface Science</i> , 2019 , 467-468, 328-334	6.7	34
135	Black phosphorus based fiber optic biosensor for ultrasensitive cancer diagnosis. <i>Biosensors and Bioelectronics</i> , 2019 , 137, 140-147	11.8	32
134	A Unique Disintegration R eassembly Route to Mesoporous Titania Nanocrystalline Hollow Spheres with Enhanced Photocatalytic Activity. <i>Advanced Functional Materials</i> , 2018 , 28, 1704208	15.6	32
133	In situ growth of all-inorganic perovskite nanocrystals on black phosphorus nanosheets. <i>Chemical Communications</i> , 2018 , 54, 2365-2368	5.8	30
132	Tunable Plasmon Enhancement of Gold/Semiconductor Core/Shell Hetero-Nanorods with Site-Selectively Grown Shell. <i>Advanced Optical Materials</i> , 2014 , 2, 679-686	8.1	30
131	Dual-emitting nanocomposites derived from rare-earth compound nanotubes for ratiometric fluorescence sensing applications. <i>Nanoscale</i> , 2013 , 5, 1629-37	7.7	28
130	Hierarchical coupling effect in hollow Ni/NiFe2O4-CNTs microsphere via spray-drying for enhanced oxygen evolution electrocatalysis. <i>Nano Research</i> , 2020 , 13, 437-446	10	27

129	Mediated Drug Release from Nanovehicles by Black Phosphorus Quantum Dots for Efficient Therapy of Chronic Obstructive Pulmonary Disease. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20568-20576	16.4	27
128	Lactose-Functionalized Gold Nanorods for Sensitive and Rapid Serological Diagnosis of Cancer. <i>ACS Applied Materials & Applied & Applied Materials & Applied & Applied</i>	9.5	26
127	Enhanced Cytosolic Delivery and Release of CRISPR/Cas9 by Black Phosphorus Nanosheets for Genome Editing. <i>Angewandte Chemie</i> , 2018 , 130, 10425-10429	3.6	26
126	Synergistic Antibacterial Activity of Black Phosphorus Nanosheets Modified with Titanium Aminobenzenesulfanato Complexes. <i>ACS Applied Nano Materials</i> , 2019 , 2, 1202-1209	5.6	25
125	Modulation of Phosphorene for Optimal Hydrogen Evolution Reaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 37787-37795	9.5	24
124	Synthesis of carboxyl-capped and bright YVO4:Eu,Bi nanoparticles and their applications in immunochromatographic test strip assay. <i>Materials Research Bulletin</i> , 2013 , 48, 4454-4459	5.1	23
123	Sensitive and Robust Colorimetric Sensing of Sulfide Anion by Plasmonic Nanosensors Based on Quick Crystal Growth. <i>Plasmonics</i> , 2014 , 9, 11-16	2.4	23
122	Growth of metal-semiconductor core-multishell nanorods with optimized field confinement and nonlinear enhancement. <i>Nanoscale</i> , 2016 , 8, 11969-75	7.7	22
121	2D Material-Based Nanofibrous Membrane for Photothermal Cancer Therapy. <i>ACS Applied Materials & Acs Applied Materials</i>	9.5	22
120	Bilayer Bismuth Selenide nanoplatelets based saturable absorber for ultra-short pulse generation (Invited). <i>Optics Communications</i> , 2017 , 395, 55-60	2	21
119	Photochemical Activity of Black Phosphorus for Near-Infrared Light Controlled In Situ Biomineralization. <i>Advanced Science</i> , 2020 , 7, 2000439	13.6	21
118	Calcium Phosphate Mineralized Black Phosphorous with Enhanced Functionality and Anticancer Bioactivity. <i>Advanced Functional Materials</i> , 2020 , 30, 2003069	15.6	20
117	InSe Nanosheets for Efficient NIR-II-Responsive Drug Release. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 27521-27528	9.5	19
116	Recent Advances in Quantum Effects of 2D Materials. <i>Advanced Quantum Technologies</i> , 2019 , 2, 180011	4.3	19
115	Synthesis of hollow rare-earth compound nanoparticles by a universal sacrificial template method. CrystEngComm, 2014 , 16, 6141-6148	3.3	19
114	Improved Biocompatibility of Black Phosphorus Nanosheets by Chemical Modification. <i>Angewandte Chemie</i> , 2017 , 129, 14680-14685	3.6	18
113	Microwave-heating synthesis and sensing applications of bright gold nanoclusters. <i>Materials Research Bulletin</i> , 2011 , 46, 2418-2421	5.1	18
112	Efficient manganese luminescence induced by Ce3+-Mn2+ energy transfer in rare earth fluoride and phosphate nanocrystals. <i>Nanoscale Research Letters</i> , 2011 , 6, 119	5	18

111	Recent advances in cell-mediated nanomaterial delivery systems for photothermal therapy. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 1296-1311	7.3	17
110	Elastic properties and intrinsic strength of two-dimensional InSe flakes. <i>Nanotechnology</i> , 2019 , 30, 3357	7 934	16
109	Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance. <i>Small</i> , 2014 , 10, 4012-9	11	16
108	Microwave-assisted synthesis of surface-passivated doped ZnSe quantum dots with enhanced fluorescence. <i>Chemical Physics Letters</i> , 2011 , 510, 135-138	2.5	16
107	Detection of coronavirus in environmental surveillance and risk monitoring for pandemic control. <i>Chemical Society Reviews</i> , 2021 , 50, 3656-3676	58.5	16
106	Black Phosphorus Based Multicolor Light-Modulated Transparent Memristor with Enhanced Resistive Switching Performance. <i>ACS Applied Materials & Description of the Enhanced Resistive Switching Performance and Description of the Enhanced Resistive Switching Performance Resistive Switching Resistive Switching Performance Resistive Switching Resistive Switching Resistive Switching Resistive Switching Resistive Resistive Switching Resistive Switching Resistive Resist</i>	9.5	15
105	Sensitive and selective ctDNA detection based on functionalized black phosphorus nanosheets. <i>Biosensors and Bioelectronics</i> , 2020 , 165, 112384	11.8	15
104	Fabrication of rare-earth/quantum-dot nanocomposites for color-tunable sensing applications. Journal of Nanoparticle Research, 2011 , 13, 525-531	2.3	15
103	Rapid and scalable production of high-quality phosphorene by plasma-liquid technology. <i>Chemical Communications</i> , 2019 , 56, 221-224	5.8	15
102	Tailoring nonlinear optical properties of Bi2Se3 through ion irradiation. <i>Scientific Reports</i> , 2016 , 6, 2179	9 4.9	15
101	Ultrathin and Ultrasensitive Direct X-ray Detector Based on Heterojunction Phototransistors. <i>Advanced Materials</i> , 2021 , 33, e2101717	24	15
100	Intrinsic bioactivity of black phosphorus nanomaterials on mitotic centrosome destabilization through suppression of PLK1 kinase. <i>Nature Nanotechnology</i> , 2021 , 16, 1150-1160	28.7	15
99	High temperature sensitivity of manganese-assisted excitonic photoluminescence from inverted core/shell ZnSe:Mn/CdSe nanocrystals. <i>Applied Physics Letters</i> , 2010 , 96, 123104	3.4	14
98	2D materials inks toward smart flexible electronics. <i>Materials Today</i> , 2021 , 50, 116-116	21.8	14
97	High-capacity and small-polarization aluminum organic batteries based on sustainable quinone-based cathodes with Al3+ insertion. <i>Cell Reports Physical Science</i> , 2021 , 2, 100354	6.1	14
96	Optoelectronic Artificial Synapses Based on Two-Dimensional Transitional-Metal Trichalcogenide. <i>ACS Applied Materials & Distriction (Communication)</i> 13, 30797-30805	9.5	14
95	Black Phosphorus All-Fiber Sensor for Highly Responsive Humidity Detection. <i>Physica Status Solidi - Rapid Research Letters</i> , 2020 , 14, 1900697	2.5	13
94	Side-to-side alignment of gold nanorods with polarization-free characteristic for highly reproducible surface enhanced Raman scattering. <i>Applied Physics Letters</i> , 2014 , 105, 211902	3.4	13

93	Preparation and Optical Properties of CdS Nanocrystals Prepared by a Mechanical Alloying Process. Journal of Physical Chemistry C, 2010 , 114, 290-293	3.8	13
92	Black phosphorous nanosheet: A novel immune-potentiating nanoadjuvant for near-infrared-improved immunotherapy. <i>Biomaterials</i> , 2021 , 273, 120788	15.6	13
91	Air-stable n-doped black phosphorus transistor by thermal deposition of metal adatoms. <i>Nanotechnology</i> , 2019 , 30, 135201	3.4	13
90	Plasma treatment of polyether-ether-ketone: A means of obtaining desirable biomedical characteristics. <i>European Polymer Journal</i> , 2019 , 118, 561-577	5.2	12
89	Nitrogen Dioxide Gas Sensor Based on Liquid-Phase-Exfoliated Black Phosphorus Nanosheets. <i>ACS Applied Nano Materials</i> , 2020 , 3, 6440-6447	5.6	12
88	Multifunctional layered gadolinium hydroxide nanoplates for ultrahigh field magnetic resonance imaging, computed tomography and fluorescence bioimaging. <i>Journal of Biomedical Nanotechnology</i> , 2014 , 10, 3620-30	4	12
87	Black Phosphorus Nanomaterials Regulate the Aggregation of Amyloid-II ChemNanoMat, 2019 , 5, 606-67	1 3 .5	11
86	Template growth of Au/Ag nanocomposites on phosphorene for sensitive SERS detection of pesticides. <i>Nanotechnology</i> , 2019 , 30, 275604	3.4	11
85	Modification of Layered Graphitic Carbon Nitride by Nitrogen Plasma for Improved Electrocatalytic Hydrogen Evolution. <i>Nanomaterials</i> , 2019 , 9,	5.4	11
84	Improved microwave absorption performance of a multi-dimensional Fe2O3/CNTCM@CN assembly achieved by enhanced dielectric relaxation. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 5715-5726	7.1	11
83	Stepwise synthesis of cubic Au-AgCdS core-shell nanostructures with tunable plasmon resonances and fluorescence. <i>Optics Express</i> , 2013 , 21, 24793-8	3.3	11
82	Understanding angle-resolved polarized Raman scattering from black phosphorus at normal and oblique laser incidences. <i>Science Bulletin</i> , 2020 , 65, 1894-1900	10.6	11
81	Bioactive phospho-therapy with black phosphorus for tumor suppression. <i>Theranostics</i> , 2020 , 10, 4720-4	473.6	11
80	GdVO:Eu,Bi Nanoparticles as a Contrast Agent for MRI and Luminescence Bioimaging. <i>ACS Omega</i> , 2019 , 4, 15806-15814	3.9	10
79	Opportunities and challenges for aqueous metal-proton batteries. <i>Matter</i> , 2021 , 4, 1252-1273	12.7	10
78	Silica-coated and annealed CdS nanowires with enhanced photoluminescence. <i>Optics Express</i> , 2013 , 21, 3253-8	3.3	9
77	Near-infrared optical performances of two Bi2Se3 nanosheets. <i>RSC Advances</i> , 2017 , 7, 50234-50238	3.7	8
76	Inherent Chemotherapeutic Anti-Cancer Effects of Low-Dimensional Nanomaterials. <i>Chemistry - A European Journal</i> , 2019 , 25, 10995-11006	4.8	8

(2014-2016)

75	Facile synthesis of flower-shaped Au/GdVO4:Eu core/shell nanoparticles by using citrate as stabilizer and complexing agent. <i>RSC Advances</i> , 2016 , 6, 9612-9618	3.7	8
74	Polarization-enhanced three-dimensional Co3O4/MoO2/C flowers as efficient microwave absorbers. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 10248-10256	7.1	8
73	Machine Learning-Aided Crystal Facet Rational Design with Ionic Liquid Controllable Synthesis. <i>Small</i> , 2021 , 17, e2100024	11	8
72	Editing the Shape Morphing of Monocomponent Natural Polysaccharide Hydrogel Films. <i>Research</i> , 2021 , 2021, 9786128	7.8	8
71	Thickness-Dependent Structural Stability and Anisotropy of Black Phosphorus. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800712	6.4	8
70	Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples. <i>Journal of Raman Spectroscopy</i> , 2019 , 50, 26-33	2.3	8
69	Lattice contraction tailoring in perovskite oxides towards improvement of oxygen electrode catalytic activity. <i>Chemical Engineering Journal</i> , 2021 , 421, 129698	14.7	8
68	Facile mass production of self-supported two-dimensional transition metal oxides for catalytic applications. <i>Chemical Communications</i> , 2019 , 55, 11406-11409	5.8	7
67	Filtration-based water treatment system embedded with black phosphorus for NIR-triggered disinfection. <i>Environmental Science: Nano</i> , 2019 , 6, 2977-2985	7.1	7
66	High Temperature Seedless Synthesis of Au NRs Using BDAC/CTAB Co-surfactant. <i>Chinese Journal of Chemical Physics</i> , 2008 , 21, 476-480	0.9	7
65	Mechanical properties and applications of 2D black phosphorus. <i>Journal of Applied Physics</i> , 2020 , 128, 230903	2.5	7
64	Enhanced cytocompatibility and reduced genotoxicity of polydimethylsiloxane modified by plasma immersion ion implantation. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 148, 139-146	6	7
63	Quantum Dots: Solvothermal Synthesis and Ultrafast Photonics of Black Phosphorus Quantum Dots (Advanced Optical Materials 8/2016). <i>Advanced Optical Materials</i> , 2016 , 4, 1222-1222	8.1	6
62	Drawing-fabrication of multifarious nanoplasmonic platform on PLLA paper for optimized SERS performance. <i>Journal of Raman Spectroscopy</i> , 2016 , 47, 687-691	2.3	6
61	Tunable nonlinear optical absorption in semiconductor nanocrystals doped with transition metal ions. <i>Journal of Applied Physics</i> , 2012 , 112, 074305	2.5	6
60	The data-intensive scientific revolution occurring where two-dimensional materials meet machine learning. <i>Cell Reports Physical Science</i> , 2021 , 2, 100482	6.1	6
59	Morphological control of gold nanorods via thermally driven bi-surfactant growth and application for detection of heavy metal ions. <i>Nanotechnology</i> , 2018 , 29, 334001	3.4	5
58	Facile Synthesis of Au Nanocube-CdS Core-Shell Nanocomposites with Enhanced Photocatalytic Activity. <i>Chinese Physics Letters</i> , 2014 , 31, 064203	1.8	5

57	Microwave synthesis of Cu-doped ternary ZnCdS quantum dots with composition-controllable photoluminescence. <i>Wuhan University Journal of Natural Sciences</i> , 2012 , 17, 217-222	0.4	5
56	Black Phosphorus: An Effective Feedstock for the Synthesis of Phosphorus-Based Chemicals. <i>CCS Chemistry</i> , 2019 , 1, 166-172	7.2	5
55	The electrical, thermal, and thermoelectric properties of black phosphorus. APL Materials, 2020, 8, 120	9 9 37	5
54	From Octahedron Crystals to 2D Silicon Nanosheets: Facet-Selective Cleavage and Biophotonic Applications. <i>Small</i> , 2020 , 16, e2003594	11	5
53	Silicon monophosphides with controlled size and crystallinity for enhanced lithium anodic performance. <i>Nanoscale</i> , 2021 , 13, 51-58	7.7	5
52	Synthetic preparations and atomic scale engineering of silver nanoparticles for biomedical applications. <i>Nanoscale</i> , 2021 , 13, 13923-13942	7.7	5
51	Rapid detection of SARS-CoV-2 viral nucleic acids based on surface enhanced infrared absorption spectroscopy. <i>Nanoscale</i> , 2021 , 13, 10133-10142	7.7	5
50	Ultralow Light-Power Consuming Photonic Synapses Based on Ultrasensitive Perovskite/Indium-Gallium-Zinc-Oxide Heterojunction Phototransistors. <i>Advanced Electronic Materials</i> , 2022 , 8, 2100902	6.4	5
49	Phosphorene: From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics (Adv. Funct. Mater. 45/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 7100-7100	15.6	4
48	Vivid structural colors from long-range ordered and carbon-integrated colloidal photonic crystals. <i>Optics Express</i> , 2018 , 26, 27001-27013	3.3	4
47	Molybdenum Diphosphide Nanorods with Laser-Potentiated Peroxidase Catalytic/Mild-Photothermal Therapy of Oral Cancer. <i>Advanced Science</i> , 2021 , e2101527	13.6	4
46	Whole-Brain Mapping the Direct Inputs of Dorsal and Ventral CA1 Projection Neurons. <i>Frontiers in Neural Circuits</i> , 2021 , 15, 643230	3.5	4
45	A versatile solar-powered vapor generating membrane for multi-media purification. <i>Separation and Purification Technology</i> , 2021 , 260, 117952	8.3	4
44	Black phosphorus: Versatile two-dimensional materials in cancer therapies. <i>View</i> , 2021 , 2, 20200043	7.8	4
43	Black Phosphorus: Bioactive Nanomaterials with Inherent and Selective Chemotherapeutic Effects. <i>Angewandte Chemie</i> , 2018 , 131, 779	3.6	4
42	Subsurface intercalation activating basal plane of black phosphorus for nitrogen reduction. <i>Journal of Energy Chemistry</i> , 2021 , 60, 293-299	12	4
41	Photothermal and Enhanced Photocatalytic Therapies Conduce to Synergistic Anticancer Phototherapy with Biodegradable Titanium Diselenide Nanosheets. <i>Small</i> , 2021 , 17, e2103239	11	4
40	In situ preparation of Mn-doped perovskite nanocrystalline films and application to white light emitting devices. <i>Journal of Colloid and Interface Science</i> , 2022 , 606, 1163-1169	9.3	4

39	Progress of fabrication and surface modification of 2D black phosphorus. <i>Chinese Science Bulletin</i> , 2017 , 62, 2252-2261	2.9	3
38	Black Phosphorus: Lanthanide-Coordinated Black Phosphorus (Small 29/2018). Small, 2018, 14, 187013	411	2
37	Rapid Activation of Platinum with Black Phosphorus for Efficient Hydrogen Evolution. <i>Angewandte Chemie</i> , 2019 , 131, 19236-19242	3.6	2
36	Controlled assembly of gold and rare-earth upconversion nanoparticles for ratiometric sensing applications. <i>Wuhan University Journal of Natural Sciences</i> , 2013 , 18, 277-282	0.4	2
35	Topochemical Synthesis of Copper Phosphide Nanoribbons for Flexible Optoelectronic Memristors. <i>Advanced Functional Materials</i> ,2110900	15.6	2
34	Detection of serum phospholipids by microchannel-integrated black phosphorus-assisted laser desorption/ionization mass spectrometry. <i>Talanta</i> , 2022 , 237, 122978	6.2	2
33	Intercalator-assisted plasma-liquid technology: an efficient exfoliation method for few-layer two-dimensional materials. <i>Science China Materials</i> , 2020 , 63, 2079-2085	7.1	2
32	Photothermal Therapy: Metabolizable Ultrathin Bi2Se3 Nanosheets in Imaging-Guided Photothermal Therapy (Small 30/2016). <i>Small</i> , 2016 , 12, 4158-4158	11	2
31	Cells nanomechanics by atomic force microscopy: focus on interactions at nanoscale. <i>Advances in Physics: X</i> , 2021 , 6, 1866668	5.1	2
30	Integration of data-intensive, machine learning and robotic experimental approaches for accelerated discovery of catalysts in renewable energy-related reactions. <i>Materials Reports Energy</i> , 2021 , 1, 100049		2
29	Strategy for improving the activity and selectivity of CO2 electroreduction on flexible carbon materials for carbon neutral. <i>Applied Energy</i> , 2021 , 298, 117196	10.7	2
28	Sensitive direct x-ray detectors based on the Infa@nD/perovskite heterojunction phototransistor. <i>Flexible and Printed Electronics</i> , 2022 , 7, 014013	3.1	2
27	Surface and interface control of black phosphorus. <i>CheM</i> , 2022 , 8, 632-662	16.2	2
26	REktitelbild: Improved Biocompatibility of Black Phosphorus Nanosheets by Chemical Modification (Angew. Chem. 46/2017). <i>Angewandte Chemie</i> , 2017 , 129, 14966-14966	3.6	1
25	Neurotoxin-directed synthesis and in vitro evaluation of Au nanoclusters. <i>RSC Advances</i> , 2015 , 5, 29647	'- <u>2</u> 9652	2 1
24	Crystalline Red Phosphorus Nanoribbons: Large-Scale Synthesis and Electrochemical Nitrogen Fixation. <i>Angewandte Chemie</i> , 2020 , 132, 14489-14493	3.6	1
23	Photoelectrochemical Ammonia Synthesis: Photoelectrochemical Synthesis of Ammonia with Black Phosphorus (Adv. Funct. Mater. 24/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070156	15.6	1
22	Gold Nanorods: Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays (Adv. Mater. 13/2016). <i>Advanced Materials</i> , 2016 , 28, 2466-2466	24	1

21	Innenr©ktitelbild: Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents (Angew. Chem. 39/2015). <i>Angewandte Chemie</i> , 2015 , 127, 11745-11745	3.6	1
20	Near-infrared absorption imaging and processing technologies based on gold nanorods. <i>Wuhan University Journal of Natural Sciences</i> , 2013 , 18, 307-312	0.4	1
19	Optical properties and ferromagnetism of ternary Cd1 Mn x Te nanocrystals. <i>Journal of Nanoparticle Research</i> , 2011 , 13, 5799-5807	2.3	1
18	CHARGE TRANSFER FROM MONOLAYERED CdSe/ZnS QUANTUM DOTS TO C60. <i>Modern Physics Letters B</i> , 2009 , 23, 1663-1669	1.6	1
17	Size-dependent flame retardancy of black phosphorus nanosheets <i>Nanoscale</i> , 2022 , 14, 2599-2604	7.7	1
16	Reversal in optical nonlinearities of BiSe nanosheets dispersion influenced by resonance absorption. <i>Optics Express</i> , 2019 , 27, 21741-21749	3.3	1
15	Electrocatalysis enabled transformation of earth-abundant water, nitrogen and carbon dioxide for a sustainable future. <i>Materials Advances</i> ,	3.3	1
14	Activating Carbon Nitride by BP@Ni for the Enhanced Photocatalytic Hydrogen Evolution and Selective Benzyl Alcohol Oxidation. <i>ACS Applied Materials & District Research</i> , 13, 50988-50995	9.5	1
13	Insight into the overpotentials of electrocatalytic hydrogen evolution on black phosphorus decorated with metal clusters. <i>Electrochimica Acta</i> , 2020 , 358, 136902	6.7	1
12	Mediated Drug Release from Nanovehicles by Black Phosphorus Quantum Dots for Efficient Therapy of Chronic Obstructive Pulmonary Disease. <i>Angewandte Chemie</i> , 2020 , 132, 20749-20757	3.6	1
11	Complete ablation of resistant tumors with photosensitive black phosphorus quantum dots-based lipid nanocapsules. <i>Chemical Engineering Journal</i> , 2021 , 421, 127879	14.7	1
10	Unveiling a Hidden Event in Fluorescence Correlative Microscopy by AFM Nanomechanical Analysis. <i>Frontiers in Molecular Biosciences</i> , 2021 , 8, 669361	5.6	O
9	Plasmon-Enhanced Fluorescence of Rare Earth Nanocrystals. <i>International Journal of Behavioral and Consultation Therapy</i> , 2017 , 15-37	0.6	
8	Black Phosphorus: Thickness-Dependent Structural Stability and Anisotropy of Black Phosphorus (Adv. Electron. Mater. 3/2019). <i>Advanced Electronic Materials</i> , 2019 , 5, 1970012	6.4	
7	Molybdenum Diphosphide Nanorods with Laser-Potentiated Peroxidase Catalytic/Mild-Photothermal Therapy of Oral Cancer (Adv. Sci. 1/2022). <i>Advanced Science</i> , 2022 , 9, 2270	00676	
6	Finite phosphorene derived partial reduction of metal organic framework nanofoams for enhanced lithium storage capability. <i>Journal of Power Sources</i> , 2022 , 525, 231025	8.9	
5	A water-soluble membrane for SARS-CoV-2 viral nucleic acid sampling and detection. <i>Nanoscale</i> , 2021 , 13, 18084-18088	7.7	
4	REktitelbild: Surface Coordination of Black Phosphorus for Robust Air and Water Stability (Angew. Chem. 16/2016). <i>Angewandte Chemie</i> , 2016 , 128, 5182-5182	3.6	

LIST OF PUBLICATIONS

3	pH-Dependent Degradation of Layered Black Phosphorus: Essential Role of Hydroxide Ions. <i>Angewandte Chemie</i> , 2018 , 131, 477	3.6
2	Topochemical Synthesis of Copper Phosphide Nanoribbons for Flexible Optoelectronic Memristors (Adv. Funct. Mater. 14/2022). <i>Advanced Functional Materials</i> , 2022 , 32, 2270087	15.6
1	Synthesis and Properties of Shape-Stabilized Phase Change Materials Based on Poly(triallyl isocyanurate-silicone)/-Octadecane Composites ACS Omega, 2022, 7, 14952-14960	3.9