List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8409853/publications.pdf Version: 2024-02-01

ΗΙΡΟΚΑΖΙΙ ΚΑΠ

#	Article	IF	CITATIONS
1	Biomimetic tissues on a chip for drug discovery. Drug Discovery Today, 2012, 17, 173-181.	3.2	317
2	Dielectrophoretically Aligned Carbon Nanotubes to Control Electrical and Mechanical Properties of Hydrogels to Fabricate Contractile Muscle Myofibers. Advanced Materials, 2013, 25, 4028-4034.	11.1	236
3	Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays. Lab on A Chip, 2005, 5, 1380.	3.1	224
4	Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications. Tissue Engineering - Part B: Reviews, 2014, 20, 403-436.	2.5	218
5	Engineered Contractile Skeletal Muscle Tissue on a Microgrooved Methacrylated Gelatin Substrate. Tissue Engineering - Part A, 2012, 18, 2453-2465.	1.6	206
6	Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells. Lab on A Chip, 2012, 12, 2959.	3.1	148
7	Engineering systems for the generation of patterned co-cultures for controlling cell–cell interactions. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 239-250.	1.1	145
8	An enzyme-based microfluidic biofuel cell using vitamin K3-mediated glucose oxidation. Electrochimica Acta, 2007, 52, 4669-4674.	2.6	142
9	Highly Conductive Stretchable and Biocompatible Electrode–Hydrogel Hybrids for Advanced Tissue Engineering. Advanced Healthcare Materials, 2014, 3, 1919-1927.	3.9	138
10	Patterned Differentiation of Individual Embryoid Bodies in Spatially Organized 3D Hybrid Microgels. Advanced Materials, 2010, 22, 5276-5281.	11.1	107
11	Microelectrochemical Approach to Induce Local Cell Adhesion and Growth on Substrates. Langmuir, 2004, 20, 16-19.	1.6	103
12	In situ formation of injectable chitosan-gelatin hydrogels through double crosslinking for sustained intraocular drug delivery. Materials Science and Engineering C, 2018, 88, 1-12.	3.8	103
13	Red blood cell motions in high-hematocrit blood flowing through a stenosed microchannel. Journal of Biomechanics, 2009, 42, 838-843.	0.9	98
14	Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue. Lab on A Chip, 2012, 12, 3491.	3.1	96
15	Structural studies of enzyme-based microfluidic biofuel cells. Journal of Power Sources, 2008, 178, 53-58.	4.0	90
16	Engineered Nanomembranes for Directing Cellular Organization Toward Flexible Biodevices. Nano Letters, 2013, 13, 3185-3192.	4.5	85
17	In Situ Control of Cellular Growth and Migration on Substrates Using Microelectrodes. Journal of the American Chemical Society, 2004, 126, 15026-15027.	6.6	83
18	Electrodeposition of anchored polypyrrole film on microelectrodes and stimulation of cultured cardiac myocytes. Biomaterials, 2007, 28, 1480-1485.	5.7	78

#	Article	IF	CITATIONS
19	Preparation and characterization of collagen microspheres for sustained release of VEGF. Journal of Materials Science: Materials in Medicine, 2010, 21, 1891-1898.	1.7	72
20	Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 582-595.	1.3	70
21	Microfluidic co-cultures of retinal pigment epithelial cells and vascular endothelial cells to investigate choroidal angiogenesis. Scientific Reports, 2017, 7, 3538.	1.6	69
22	Localized chemical stimulation to micropatterned cells using multiple laminar fluid flows. Lab on A Chip, 2003, 3, 208.	3.1	68
23	Electrical stimulation as a biomimicry tool for regulating muscle cell behavior. Organogenesis, 2013, 9, 87-92.	0.4	65
24	On-Demand Patterning of Protein Matrixes Inside a Microfluidic Device. Analytical Chemistry, 2006, 78, 5469-5473.	3.2	63
25	Electrically induced contraction of C2C12 myotubes cultured on a porous membrane-based substrate with muscle tissue-like stiffness. Biomaterials, 2010, 31, 6981-6986.	5.7	60
26	3D Printing Techniques and Their Applications to Organ-on-a-Chip Platforms: A Systematic Review. Sensors, 2021, 21, 3304.	2.1	60
27	Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films. RSC Advances, 2014, 4, 9534.	1.7	57
28	Directed assembly of cellâ€laden microgels for building porous threeâ€dimensional tissue constructs. Journal of Biomedical Materials Research - Part A, 2011, 97A, 93-102.	2.1	56
29	Micropatterning contractile C ₂ C ₁₂ myotubes embedded in a fibrin gel. Biotechnology and Bioengineering, 2010, 105, 1161-1167.	1.7	53
30	Drug delivery devices for retinal diseases. Advanced Drug Delivery Reviews, 2018, 128, 148-157.	6.6	51
31	Patterning Cellular Motility Using an Electrochemical Technique and a Geometrically Confined Environment. Langmuir, 2006, 22, 10784-10787.	1.6	49
32	Micropatterned Polymeric Nanosheets for Local Delivery of an Engineered Epithelial Monolayer. Advanced Materials, 2014, 26, 1699-1705.	11.1	49
33	Controlled cocultures of HeLa cells and human umbilical vein endothelial cells on detachable substrates. Lab on A Chip, 2009, 9, 427-432.	3.1	47
34	A microfluidic-based neurotoxin concentration gradient for the generation of an <i>in vitro</i> model of Parkinson's disease. Biomicrofluidics, 2011, 5, 22214.	1.2	43
35	Designer Hydrophilic Regions Regulate Droplet Shape for Controlled Surface Patterning and 3D Microgel Synthesis. Small, 2012, 8, 393-403.	5.2	42
36	Patterning the Surface Cytophobicity of an Albumin-Physisorbed Substrate by Electrochemical Means. Langmuir, 2005, 21, 6966-6969.	1.6	41

#	Article	IF	CITATIONS
37	Fiberâ€Assisted Molding (FAM) of Surfaces with Tunable Curvature to Guide Cell Alignment and Complex Tissue Architecture. Small, 2014, 10, 4851-4857.	5.2	41
38	Totally shape-conformable electrode/hydrogel composite for on-skin electrophysiological measurements. Sensors and Actuators B: Chemical, 2016, 237, 49-53.	4.0	41
39	A polymeric device for controlled transscleral multi-drug delivery to the posterior segment of the eye. Acta Biomaterialia, 2014, 10, 680-687.	4.1	40
40	Biofuel cell anode: NAD+/glucose dehydrogenase-coimmobilized ketjenblack electrode. Chemical Physics Letters, 2009, 480, 123-126.	1.2	38
41	Axisymmetric polydimethysiloxane microchannels for <i>in vitro</i> hemodynamic studies. Biofabrication, 2009, 1, 035005.	3.7	38
42	A scalable controlled-release device for transscleral drug delivery to the retina. Biomaterials, 2011, 32, 1950-1956.	5.7	38
43	Controlled Release of Drugs from Gradient Hydrogels for High-Throughput Analysis of Cell–Drug Interactions. Analytical Chemistry, 2012, 84, 1302-1309.	3.2	36
44	A contactless electrical stimulator: application to fabricate functional skeletal muscle tissue. Biomedical Microdevices, 2013, 15, 109-115.	1.4	35
45	Modeling angiogenesis with micro- and nanotechnology. Lab on A Chip, 2017, 17, 4186-4219.	3.1	32
46	Pharmacological characterization of micropatterned cardiac myocytes. Biomaterials, 2003, 24, 4239-4244.	5.7	31
47	Selective capture of a specific cell type from mixed leucocytes in an electrode-integrated microfluidic device. Biosensors and Bioelectronics, 2009, 24, 2892-2897.	5.3	29
48	Intracellular Ca2+ imaging for micropatterned cardiac myocytes. Biotechnology and Bioengineering, 2003, 81, 748-751.	1.7	28
49	Organ-on-a-Chip Platforms for Drug Screening and Delivery in Tumor Cells: A Systematic Review. Cancers, 2022, 14, 935.	1.7	27
50	Monitoring impedance changes associated with motility and mitosis of a single cell. Lab on A Chip, 2010, 10, 2546.	3.1	26
51	Directing the flow of medium in controlled cocultures of HeLa cells and human umbilical vein endothelial cells with a microfluidic device. Lab on A Chip, 2010, 10, 2374.	3.1	23
52	A Platform for Controlled Dualâ€Drug Delivery to the Retina: Protective Effects against Lightâ€Induced Retinal Damage in Rats. Advanced Healthcare Materials, 2014, 3, 1555-1560.	3.9	23
53	Transscleral Sustained Vasohibin-1 Delivery by a Novel Device Suppressed Experimentally-Induced Choroidal Neovascularization. PLoS ONE, 2013, 8, e58580.	1.1	23
54	Portable Micropatterns of Neuronal Cells Supported by Thin Hydrogel Films. ACS Biomaterials Science and Engineering, 2015, 1, 329-334.	2.6	22

#	Article	IF	CITATIONS
55	Localized immobilization of proteins onto microstructures within a preassembled microfluidic device. Sensors and Actuators B: Chemical, 2008, 128, 545-551.	4.0	21
56	Contractile Skeletal Muscle Cells Cultured with a Conducting Soft Wire for Effective, Selective Stimulation. Scientific Reports, 2018, 8, 2253.	1.6	20
57	The microRNA cluster C19MC confers differentiation potential into trophoblast lineages upon human pluripotent stem cells. Nature Communications, 2022, 13, .	5.8	20
58	A porous membrane-based culture substrate for localized in situ electroporation of adherent mammalian cells. Sensors and Actuators B: Chemical, 2007, 128, 5-11.	4.0	19
59	Localized electrical stimulation to C2C12 myotubes cultured on a porous membrane-based substrate. Biomedical Microdevices, 2009, 11, 413-419.	1.4	18
60	Long-Term Protection of Genetically Ablated Rabbit Retinal Degeneration by Sustained Transscleral Unoprostone Delivery. , 2016, 57, 6527.		18
61	Anisotropic Growth of Conducting Polymers along Heparin-Modified Surfaces. Langmuir, 2007, 23, 8304-8307.	1.6	15
62	Prototyping a Versatile Two-Layer Multi-Channel Microfluidic Device for Direct-Contact Cell-Vessel Co-Culture. Micromachines, 2020, 11, 79.	1.4	14
63	Integration of an electrochemical-based biolithography technique into an AFM system. Analytical and Bioanalytical Chemistry, 2008, 391, 2711-2716.	1.9	13
64	Patterning Adherent Cells within Microchannels by Combination of Electrochemical Biolithography Technique and Repulsive Dielectrophoretic Force. Electrochemistry, 2008, 76, 555-558.	0.6	13
65	Recent trends of biomaterials and biosensors for organ-on-chip platforms. Bioprinting, 2022, 26, e00202.	2.9	13
66	Stepwise formation of patterned cell co-cultures in silicone tubing. Biotechnology and Bioengineering, 2007, 98, 919-925.	1.7	12
67	Pharmacokinetic and Safety Evaluation of a Transscleral Sustained Unoprostone Release Device in Monkey Eyes. , 2018, 59, 644.		12
68	Micropatterned HeLa Cell Culture on PEG Monolayer-Coated Glass Substrates. Chemistry Letters, 2002, 31, 904-905.	0.7	11
69	Spatiotemporal sub-cellular biopatterning using an AFM-assisted electrochemical system. Electrochemistry Communications, 2009, 11, 1781-1784.	2.3	11
70	Minimally-invasive transepidermal potentiometry with microneedle salt bridge. Biomedical Microdevices, 2016, 18, 55.	1.4	10
71	Electrochemical manipulation of cell populations supported by biodegradable polymeric nanosheets for cell transplantation therapy. Biomaterials Science, 2017, 5, 216-222.	2.6	10
72	A drug refillable device for transscleral sustained drug delivery to the retina. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 136, 184-191.	2.0	9

#	Article	IF	CITATIONS
73	A 3D Printed Self-Sustainable Cell-Encapsulation Drug Delivery Device for Periocular Transplant-Based Treatment of Retinal Degenerative Diseases. Micromachines, 2020, 11, 436.	1.4	9
74	Transscleral sustained ranibizumab delivery using an episcleral implantable device: Suppression of laser-induced choroidal neovascularization in rats. International Journal of Pharmaceutics, 2019, 567, 118458.	2.6	8
75	Electrodes Combined with an Agarose Stamp for Addressable Micropatterning. Langmuir, 2010, 26, 11526-11529.	1.6	7
76	Protective effects of sustained transscleral unoprostone delivery against retinal degeneration in <scp>S</scp> 334ter rhodopsin mutant rats. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1730-1737.	1.6	7
77	A multilayered sheet-type device capable of sustained drug release and deployment control. Biomedical Microdevices, 2019, 21, 60.	1.4	7
78	Microfluidic systems for controlling stem cell microenvironments. , 2019, , 31-63.		7
79	Hydrogel-based bioassay sheets for in vitro evaluation of contraction-dependent metabolic regulation in skeletal muscle cells. Biomaterials Science, 2014, 2, 252-256.	2.6	6
80	Microstamp-Based Micromachining for Modulation of Growth of Cultured Neuronal Cells. JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 2004, 47, 956-961.	0.3	5
81	Conducting Polymer-Based Electrodes for Controlling Cellular Functions. Electrochemistry, 2008, 76, 532-534.	0.6	5
82	Application of clotrimazole via a novel controlled release device provides potent retinal protection. Journal of Materials Science: Materials in Medicine, 2015, 26, 230.	1.7	5
83	Transscleral Controlled Delivery of Geranylgeranylaceton Using a Polymeric Device Protects Rat Retina Against Light Injury. Advances in Experimental Medicine and Biology, 2016, 854, 471-477.	0.8	5
84	Physicochemical and biological characterization of sustained isopropyl unoprostone-release device made of poly(ethyleneglycol) dimethacrylates. Journal of Materials Science: Materials in Medicine, 2017, 28, 107.	1.7	5
85	Transfer of two-dimensional patterns of human umbilical vein endothelial cells into fibrin gels to facilitate vessel formation. Chemical Communications, 2010, 46, 2070.	2.2	4
86	Bonding of synthetic hydrogels with fibrin as the glue to engineer hydrogel-based biodevices. Journal of Bioscience and Bioengineering, 2014, 118, 94-97.	1.1	4
87	Controlled basic fibroblast growth factor release device made of poly(ethyleneglycol) dimethacrylates for creating a subcutaneous neovascular bed for cell transplantation. Journal of Biomedical Materials Research - Part A, 2017, 105, 3017-3024.	2.1	4
88	An Open-Source Add-On EVOM® Device for Real-Time Transepithelial/Endothelial Electrical Resistance Measurements in Multiple Transwell Samples. Micromachines, 2021, 12, 282.	1.4	4
89	Highly stretchable cell-cultured hydrogel sheet. RSC Advances, 2015, 5, 66334-66338.	1.7	3
90	A selfâ€deploying drug release device using polymeric films. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 780-786.	1.6	3

#	Article	IF	CITATIONS
91	Intrascleral Transplantation of a Collagen Sheet with Cultured Brain-Derived Neurotrophic Factor Expressing Cells Partially Rescues the Retina from Damage due to Acute High Intraocular Pressure. Advances in Experimental Medicine and Biology, 2014, 801, 837-843.	0.8	3
92	Fabrication and Characterization of Micropatterned Living Cells. Hyomen Kagaku, 2004, 25, 290-295.	0.0	3
93	In-situãfªã,½ã,°ãf©ãf•ã,£ãf¼ã«ã,ˆã,<ãfã,ª,ªãfãffãf—表é¢ã®å«çš"å^¶å¾¡. Hyomen Gijutsu/Journal of the Sur	faϣinisl	nin g Society
94	Microdroplet Patterning: Designer Hydrophilic Regions Regulate Droplet Shape for Controlled Surface Patterning and 3D Microgel Synthesis (Small 3/2012). Small, 2012, 8, 326-326.	5.2	2
95	On-chip disease models of the human retina. , 2019, , 351-372.		2
96	Elcrochemical bio-lithography for in-situ immobilization of proteins and cells within microchannels. , 0, , .		1
97	AN ELECTROCHEMICAL MICROSYSTEM FOR MANIPULATING LIVING CELLS. , 2006, , .		1
98	Stepwise Electric Power Generation for Prolonging Lifetime of Miniaturized Biofuel Cell. ECS Meeting Abstracts, 2008, , .	0.0	1
99	Microfluidic Systems for Controlling Stem Cells Microenvironments. , 2013, , 175-203.		1
100	Microfabrication and Nanofabrication Techniques. , 2015, , 207-219.		1
101	Microscale Biomaterials for Tissue Engineering. , 2011, , 119-138.		1
102	Electrochemical Bio-Lithography for In Situ Control of Cellular Adhesion and Growth on a Chip. , 0, , .		0
103	Electrochemical Approach to Pattern Cells within Three-Dimensional Microstructures. , 2006, , .		0
104	ãfũ,¤,ªãfªã,½ã,ºãf©ãf∙ã,£ãf¼ï¼šç•Œé¢å^†åå^¶å¾¡ã°ç°èfžæ"作. Electrochemistry, 2006, 74, 905-910.	0.6	0
105	ENZYME-BASED GLUCOSE BIOFUEL CELL USING VITAMIN K ₃ -IMMOBILIZED POLYMER AS ELECTRON MEDIATOR. , 2006, , .		0
106	Generation of Patterned Cell Co-Cultures in Silicone Tubing Using a Microelectrode Technique and Electrostatic Assembly. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 5861-4.	0.5	0
107	Generation of Patterned Cell Co-Cultures inside Tubular Structure Using Electrochemical Biolithography and Electrostatic Assembly. , 2007, , .		0
108	Control of Cellular Adhesion within Microfluidic Device using Electrochemical Biolithography and Dielectrophoresis for Cell-Based Assay. ECS Transactions, 2008, 16, 11-20.	0.3	0

#	Article	IF	CITATIONS
109	Stem Cells: Patterned Differentiation of Individual Embryoid Bodies in Spatially Organized 3D Hybrid Microgels (Adv. Mater. 46/2010). Advanced Materials, 2010, 22, 5220-5220.	11.1	0
110	Biofabrication techniques for biologically relevant tissue models and drug delivery devices. , 2012, , .		0
111	Injectable polymeric nanosheets for subretinal cell delivery. , 2016, , .		0
112	Hydrogel-based electrical stimulation culture system to control the engineered cellular activities driven by nano biomolecules. , 2016, , .		0
113	Effect of sustained insulin-releasing device made of poly(ethylene glycol) dimethacrylates on retinal function in streptozotocin-induced diabetic rats. Journal of Materials Science: Materials in Medicine, 2020, 31, 52.	1.7	0
114	6PM3-PMN-004 Polymeric Ultra-thin Films for Cell Delivery System. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2013, 2013.5, 179-180.	0.0	0
115	1C31 Applications of micro/nanotechnologies to ophthalmology. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2014, 2014.26, 87-88.	0.0	0
116	2C43 Cell delivery to the subretinal space of rats using nanosheets. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2015, 2015.27, 419-420.	0.0	0
117	2G42 Development of an injectable drug release device using polymeric films. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2016, 2016.28, _2G42-12G42-5	0.0	0
118	Drug and Cell Delivery Systems for Posterior Ocular Diseases. Membrane, 2020, 45, 240-244.	0.0	0
119	Electrochemical In-Situ Micropatterning of Cells and Polymers. IFMBE Proceedings, 2009, , 2173-2176.	0.2	0
120	Development of Cell Delivery System for the Subretinal Space Using Biodegradable Nanosheets. ECS Meeting Abstracts, 2020, MA2020-02, 2789-2789.	0.0	0
121	Development of a 3D Printed Refillable Drug Delivery Device for Sustained Release to the Retina. ECS Meeting Abstracts, 2020, MA2020-02, 3290-3290.	0.0	0
122	Development of a Microfluidic Device for Modeling Human Placenta. ECS Meeting Abstracts, 2020, MA2020-02, 3686-3686.	0.0	0
123	Realtime Transepithelial/Endothelial Electrical Resistance Measurements in Multiple Transwell Culture Inserts. ECS Meeting Abstracts, 2020, MA2020-02, 2794-2794.	0.0	0