
Eunkyoung Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8409848/publications.pdf

Version: 2024-02-01

FUNKYOUNG KIM

3.7

25

#	Article	IF	CITATIONS
1	System-Level Network Analysis of a Catechol Component for Redox Bioelectronics. ACS Applied Electronic Materials, 2022, 4, 2490-2501.	2.0	7
2	Network-based redox communication between abiotic interactive materials. IScience, 2022, 25, 104548.	1.9	4
3	Hydrogel Patterning with Catechol Enables Networked Electron Flow. Advanced Functional Materials, 2021, 31, 2007709.	7.8	24
4	Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals. Nature Nanotechnology, 2021, 16, 688-697.	15.6	56
5	Interactive Materials for Bidirectional Redoxâ€Based Communication. Advanced Materials, 2021, 33, e2007758.	11.1	14
6	Simple, rapidly electroassembled thiolated PEGâ€based sensor interfaces enable rapid interrogation of antibody titer and glycosylation. Biotechnology and Bioengineering, 2021, 118, 2744-2758.	1.7	8
7	Mediated Electrochemical Probing: A Systems-Level Tool for Redox Biology. ACS Chemical Biology, 2021, 16, 1099-1110.	1.6	13
8	Mediated electrochemistry for redox-based biological targeting: entangling sensing and actuation for maximizing information transfer. Current Opinion in Biotechnology, 2021, 71, 137-144.	3.3	19
9	Association of acute psychosocial stress with oxidative stress: Evidence from serum analysis. Redox Biology, 2021, 47, 102138.	3.9	14
10	Catechol Patterned Film Enables the Enzymatic Detection of Glucose with Cell Phone Imaging. ACS Sustainable Chemistry and Engineering, 2021, 9, 14836-14845.	3.2	7
11	Tethered molecular redox capacitors for nanoconfinement-assisted electrochemical signal amplification. Nanoscale, 2020, 12, 3668-3676.	2.8	10
12	Redox Activities of Melanins Investigated by Electrochemical Reverse Engineering: Implications for their Roles in Oxidative Stress. Journal of Investigative Dermatology, 2020, 140, 537-543.	0.3	20
13	Redox Electrochemistry to Interrogate and Control Biomolecular Communication. IScience, 2020, 23, 101545.	1.9	30
14	Molecular Memory: Catecholâ€Based Molecular Memory Film for Redox Linked Bioelectronics (Adv.) Tj ETQqO	0 0 rgBT /O	verlock 10 Tf
15	Catecholâ€Based Molecular Memory Film for Redox Linked Bioelectronics. Advanced Electronic Materials, 2020, 6, 2000452.	2.6	14
16	A redox-based electrogenetic CRISPR system to connect with and control biological information networks. Nature Communications, 2020, 11, 2427.	5.8	46
17	Mediated Electrochemistry to Mimic Biology's Oxidative Assembly of Functional Matrices. Advanced	7.8	17

Hierarchical patterning via dynamic sacrificial printing of stimuli-responsive hydrogels.
Biofabrication, 2020, 12, 035007.

EUNKYOUNG KIM

#	Article	IF	CITATIONS
19	A Coculture Based Tyrosine-Tyrosinase Electrochemical Gene Circuit for Connecting Cellular Communication with Electronic Networks. ACS Synthetic Biology, 2020, 9, 1117-1128.	1.9	23
20	Transglutaminase-mediated assembly of multi-enzyme pathway onto TMV brush surfaces for synthesis of bacterial autoinducer-2. Biofabrication, 2020, 12, 045017.	3.7	4
21	Melanin Produced by the Fast-Growing Marine Bacterium Vibrio natriegens through Heterologous Biosynthesis: Characterization and Application. Applied and Environmental Microbiology, 2020, 86, .	1.4	45
22	Redox-Channeling Polydopamine-Ferrocene (PDA-Fc) Coating To Confer Context-Dependent and Photothermal Antimicrobial Activities. ACS Applied Materials & Interfaces, 2020, 12, 8915-8928.	4.0	67
23	Electrical cuing of chitosan's mesoscale organization. Reactive and Functional Polymers, 2020, 148, 104492.	2.0	15
24	Polyelectrolyte in Electric Field: Disparate Conformational Behavior along an Aminopolysaccharide Chain. ACS Omega, 2020, 5, 12016-12026.	1.6	11
25	Validation of oxidative stress assay for schizophrenia. Schizophrenia Research, 2019, 212, 126-133.	1.1	15
26	Pro- and Anti-oxidant Properties of Redox-Active Catechol-Chitosan Films. Frontiers in Chemistry, 2019, 7, 541.	1.8	13
27	Catechol-Based Capacitor for Redox-Linked Bioelectronics. ACS Applied Electronic Materials, 2019, 1, 1337-1347.	2.0	26
28	Chip modularity enables molecular information access from organ-on-chip devices with quality control. Sensors and Actuators B: Chemical, 2019, 295, 30-39.	4.0	23
29	Redox-Based Synthetic Biology Enables Electrochemical Detection of the Herbicides Dicamba and Roundup via Rewired <i>Escherichia coli</i> . ACS Sensors, 2019, 4, 1180-1184.	4.0	29
30	Redox Is a Global Biodevice Information Processing Modality. Proceedings of the IEEE, 2019, 107, 1402-1424.	16.4	37
31	Programmable Electrofabrication of Porous Janus Films with Tunable Janus Balance for Anisotropic Cell Guidance and Tissue Regeneration. Advanced Functional Materials, 2019, 29, 1900065.	7.8	58
32	Role of polydopamine's redox-activity on its pro-oxidant, radical-scavenging, and antimicrobial activities. Acta Biomaterialia, 2019, 88, 181-196.	4.1	137
33	Electrobiofabrication: electrically based fabrication with biologically derived materials. Biofabrication, 2019, 11, 032002.	3.7	43
34	Coupling Self-Assembly Mechanisms to Fabricate Molecularly and Electrically Responsive Films. Biomacromolecules, 2019, 20, 969-978.	2.6	14
35	Electrochemical reverse engineering to probe for drug-phenol redox interactions. Electrochimica Acta, 2019, 295, 742-750.	2.6	4
36	Electrofabrication of functional materials: Chloramine-based antimicrobial film for infectious wound treatment. Acta Biomaterialia, 2018, 73, 190-203.	4.1	30

Еилкуоилд Кім

#	Article	IF	CITATIONS
37	Bio-inspired redox-cycling antimicrobial film for sustained generation of reactive oxygen species. Biomaterials, 2018, 162, 109-122.	5.7	72
38	Signal processing approach to probe chemical space for discriminating redox signatures. Biosensors and Bioelectronics, 2018, 112, 127-135.	5.3	17
39	The Role of Microsystems Integration Towards Point-of-Care Clozapine Treatment Monitoring in Schizophrenia. , 2018, 2, 1-4.		4
40	Electrical Programming of Soft Matter: Using Temporally Varying Electrical Inputs To Spatially Control Self Assembly. Biomacromolecules, 2018, 19, 364-373.	2.6	46
41	Incorporating LsrK Alâ€2 quorum quenching capability in a functionalized biopolymer capsule. Biotechnology and Bioengineering, 2018, 115, 278-289.	1.7	12
42	Selective assembly and functionalization of miniaturized redox capacitor inside microdevices for microbial toxin and mammalian cell cytotoxicity analyses. Lab on A Chip, 2018, 18, 3578-3587.	3.1	24
43	Exploring pH-Responsive, Switchable Crosslinking Mechanisms for Programming Reconfigurable Hydrogels Based on Aminopolysaccharides. Chemistry of Materials, 2018, 30, 8597-8605.	3.2	19
44	Reversibly Reconfigurable Cross-Linking Induces Fusion of Separate Chitosan Hydrogel Films. ACS Applied Bio Materials, 2018, 1, 1695-1704.	2.3	12
45	Redox: Electron-Based Approach to Bio-Device Molecular Communication. , 2018, , .		2
46	Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis. Colloids and Surfaces B: Biointerfaces, 2018, 169, 470-477.	2.5	15
47	Radical Scavenging Activities of Biomimetic Catechol-Chitosan Films. Biomacromolecules, 2018, 19, 3502-3514.	2.6	34
48	Electrodeposition of a magnetic and redox-active chitosan film for capturing and sensing metabolic active bacteria. Carbohydrate Polymers, 2018, 195, 505-514.	5.1	21
49	Biofabricating Functional Soft Matter Using Protein Engineering to Enable Enzymatic Assembly. Bioconjugate Chemistry, 2018, 29, 1809-1822.	1.8	14
50	Electrical Writing onto a Dynamically Responsive Polysaccharide Medium: Patterning Structure and Function into a Reconfigurable Medium. Advanced Functional Materials, 2018, 28, 1803139.	7.8	27
51	Reverse Engineering To Characterize Redox Properties: Revealing Melanin's Redox Activity through Mediated Electrochemical Probing. Chemistry of Materials, 2018, 30, 5814-5826.	3.2	36
52	Blood Draw Barriers for Treatment with Clozapine and Development of a Point-of-Care Monitoring Device. Clinical Schizophrenia and Related Psychoses, 2018, 12, 23-30.	1.4	30
53	A Facile Two-Step Enzymatic Approach for Conjugating Proteins to Polysaccharide Chitosan at an Electrode Interface. Cellular and Molecular Bioengineering, 2017, 10, 134-142.	1.0	9
54	Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nature Communications, 2017, 8, 14030.	5.8	120

EUNKYOUNG KIM

#	Article	IF	CITATIONS
55	Reversible Programing of Soft Matter with Reconfigurable Mechanical Properties. Advanced Functional Materials, 2017, 27, 1605665.	7.8	46
56	Electrochemistry for bio-device molecular communication: The potential to characterize, analyze and actuate biological systems. Nano Communication Networks, 2017, 11, 76-89.	1.6	15
57	The interplay of electrode- and bio-materials in a redox-cycling-based clozapine sensor. Electrochemistry Communications, 2017, 79, 33-36.	2.3	9
58	Reliable clinical serum analysis with reusable electrochemical sensor: Toward point-of-care measurement of the antipsychotic medication clozapine. Biosensors and Bioelectronics, 2017, 95, 55-59.	5.3	33
59	Molecular processes in an electrochemical clozapine sensor. Biointerphases, 2017, 12, 02B401.	0.6	7
60	Redox Probing for Chemical Information of Oxidative Stress. Analytical Chemistry, 2017, 89, 1583-1592.	3.2	46
61	Electrochemical reverse engineering: A systems-level tool to probe the redox-based molecular communication of biology. Free Radical Biology and Medicine, 2017, 105, 110-131.	1.3	32
62	The Analgesic Acetaminophen and the Antipsychotic Clozapine Can Each Redox-Cycle with Melanin. ACS Chemical Neuroscience, 2017, 8, 2766-2777.	1.7	11
63	Spectroelectrochemical Reverse Engineering DemonstratesThat Melanin's Redox and Radical Scavenging Activities Are Linked. Biomacromolecules, 2017, 18, 4084-4098.	2.6	63
64	Connecting Biology to Electronics: Molecular Communication via Redox Modality. Advanced Healthcare Materials, 2017, 6, 1700789.	3.9	40
65	Toward Understanding the Environmental Control of Hydrogel Film Properties: How Salt Modulates the Flexibility of Chitosan Chains. Macromolecules, 2017, 50, 5946-5952.	2.2	35
66	Using a Redox Modality to Connect Synthetic Biology to Electronics: Hydrogelâ€Based Chemoâ€Electro Signal Transduction for Molecular Communication. Advanced Healthcare Materials, 2017, 6, 1600908.	3.9	44
67	Conferring biological activity to native spider silk: A biofunctionalized proteinâ€based microfiber. Biotechnology and Bioengineering, 2017, 114, 83-95.	1.7	20
68	The Binding Effect of Proteins on Medications and Its Impact on Electrochemical Sensing: Antipsychotic Clozapine as a Case Study. Pharmaceuticals, 2017, 10, 69.	1.7	6
69	Catechol-Based Hydrogel for Chemical Information Processing. Biomimetics, 2017, 2, 11.	1.5	21
70	Electrochemical Probing through a Redox Capacitor To Acquire Chemical Information on Biothiols. Analytical Chemistry, 2016, 88, 7213-7221.	3.2	27
71	Fusing Sensor Paradigms to Acquire Chemical Information: An Integrative Role for Smart Biopolymeric Hydrogels. Advanced Healthcare Materials, 2016, 5, 2595-2616.	3.9	16
72	Electro-molecular Assembly: Electrical Writing of Information into an Erasable Polysaccharide Medium. ACS Applied Materials & Interfaces, 2016, 8, 19780-19786.	4.0	49

EUNKYOUNG KIM

#	Article	IF	CITATIONS
73	Modular construction of multi-subunit protein complexes using engineered tags and microbial transglutaminase. Metabolic Engineering, 2016, 38, 1-9.	3.6	17
74	Paraquat–Melanin Redox-Cycling: Evidence from Electrochemical Reverse Engineering. ACS Chemical Neuroscience, 2016, 7, 1057-1067.	1.7	20
75	Electrochemical Measurement of the \hat{l}^2 -Galactosidase Reporter from Live Cells: A Comparison to the Miller Assay. ACS Synthetic Biology, 2016, 5, 28-35.	1.9	44
76	Reverse Engineering Applied to Red Human Hair Pheomelanin Reveals Redox-Buffering as a Pro-Oxidant Mechanism. Scientific Reports, 2015, 5, 18447.	1.6	67
77	Biofabricated Nanoparticle Coating for Liver ell Targeting. Advanced Healthcare Materials, 2015, 4, 1972-1981.	3.9	13
78	Programmable "Semismart―Sensor: Relevance to Monitoring Antipsychotics. Advanced Functional Materials, 2015, 25, 2156-2165.	7.8	23
79	Multidimensional Mapping Method Using an Arrayed Sensing System for Cross-Reactivity Screening. PLoS ONE, 2015, 10, e0116310.	1.1	10
80	Biospecific Selfâ€Assembly of a Nanoparticle Coating for Targeted and Stimuliâ€Responsive Drug Delivery. Advanced Functional Materials, 2015, 25, 1404-1417.	7.8	50
81	An Electrochemical Micro-System for Clozapine Antipsychotic Treatment Monitoring. Electrochimica Acta, 2015, 163, 260-270.	2.6	17
82	Functionalizing Soft Matter for Molecular Communication. ACS Biomaterials Science and Engineering, 2015, 1, 320-328.	2.6	24
83	Chitosan to Connect Biology to Electronics: Fabricating the Bio-Device Interface and Communicating Across This Interface. Polymers, 2015, 7, 1-46.	2.0	87
84	pH-Responsive Self-Assembly of Polysaccharide through a Rugged Energy Landscape. Journal of the American Chemical Society, 2015, 137, 13024-13030.	6.6	89
85	A Multistep Photothermicâ€Driven Drug Release System Using Wireâ€Framed Au Nanobundles. Advanced Healthcare Materials, 2015, 4, 255-263.	3.9	8
86	Electrochemical Study of the Catechol-Modified Chitosan System for Clozapine Treatment Monitoring. Langmuir, 2014, 30, 14686-14693.	1.6	31
87	Enzymatic Writing to Soft Films: Potential to Filter, Store, and Analyze Biologically Relevant Chemical Information. Advanced Functional Materials, 2014, 24, 480-491.	7.8	17
88	Information processing through a bio-based redox capacitor: Signatures for redox-cycling. Bioelectrochemistry, 2014, 98, 94-102.	2.4	33
89	Tyrosinase-mediated grafting and crosslinking of natural phenols confers functional properties to chitosan. Biochemical Engineering Journal, 2014, 89, 21-27.	1.8	46
90	Redox cycling-based amplifying electrochemical sensor for in situ clozapine antipsychotic treatment monitoring. Electrochimica Acta, 2014, 130, 497-503.	2.6	36

Еилкуоилд Кім

#	Article	IF	CITATIONS
91	Redox-capacitor to connect electrochemistry to redox-biology. Analyst, The, 2014, 139, 32-43.	1.7	71
92	Coding for hydrogel organization through signal guided self-assembly. Soft Matter, 2014, 10, 465-469.	1.2	66
93	Context-Dependent Redox Properties of Natural Phenolic Materials. Biomacromolecules, 2014, 15, 1653-1662.	2.6	71
94	Multimodal label-free detection and discrimination for small molecules using a nanoporous resonator. Nature Communications, 2014, 5, 3456.	5.8	19
95	Electronic modulation of biochemical signal generation. Nature Nanotechnology, 2014, 9, 605-610.	15.6	52
96	Rapid and Repeatable Redox Cycling of an Insoluble Dietary Antioxidant: Electrochemical Analysis. Journal of Agricultural and Food Chemistry, 2014, 62, 9760-9768.	2.4	7
97	Amplified and in Situ Detection of Redox-Active Metabolite Using a Biobased Redox Capacitor. Analytical Chemistry, 2013, 85, 2102-2108.	3.2	86
98	Electrodeposition of a weak polyelectrolyte hydrogel: remarkable effects of salt on kinetics, structure and properties. Soft Matter, 2013, 9, 2703.	1.2	59
99	Biofabricated film with enzymatic and redox-capacitor functionalities to harvest and store electrons. Biofabrication, 2013, 5, 015008.	3.7	22
100	Accessing biology's toolbox for the mesoscale biofabrication of soft matter. Soft Matter, 2013, 9, 6019.	1.2	30
101	Reverse Engineering To Suggest Biologically Relevant Redox Activities of Phenolic Materials. ACS Chemical Biology, 2013, 8, 716-724.	1.6	44
102	Catechol-modified Chitosan System as a Bio-amplifier for Schizophrenia Treatment Analysis. Materials Research Society Symposia Proceedings, 2013, 1572, 1.	0.1	2
103	Autonomous bacterial localization and gene expression based on nearby cell receptor density. Molecular Systems Biology, 2013, 9, 636.	3.2	65
104	Electrodeposition of a Biopolymeric Hydrogel: Potential for One-Step Protein Electroaddressing. Biomacromolecules, 2012, 13, 1181-1189.	2.6	82
105	Glucose Oxidase-Mediated Gelation: A Simple Test To Detect Glucose in Food Products. Journal of Agricultural and Food Chemistry, 2012, 60, 8963-8967.	2.4	30
106	Biofabrication: programmable assembly of polysaccharide hydrogels in microfluidics as biocompatible scaffolds. Journal of Materials Chemistry, 2012, 22, 7659.	6.7	75
107	pH- and Voltage-Responsive Chitosan Hydrogel through Covalent Cross-Linking with Catechol. Journal of Physical Chemistry B, 2012, 116, 1579-1585.	1.2	50
108	Redox Capacitor to Establish Bioâ€Device Redox onnectivity. Advanced Functional Materials, 2012, 22, 1409-1416.	7.8	65

Еилкуоилд Кім

#	Article	IF	CITATIONS
109	Biofabricating Multifunctional Soft Matter with Enzymes and Stimuliâ€Responsive Materials. Advanced Functional Materials, 2012, 22, 3004-3012.	7.8	54
110	Electroaddressing Agarose Using Fmoc-Phenylalanine as a Temporary Scaffold. Langmuir, 2011, 27, 7380-7384.	1.6	28
111	Redox-Cycling and H ₂ O ₂ Generation by Fabricated Catecholic Films in the Absence of Enzymes. Biomacromolecules, 2011, 12, 880-888.	2.6	53
112	Biocompatible multi-address 3D cell assembly in microfluidic devices using spatially programmable gel formation. Lab on A Chip, 2011, 11, 2316.	3.1	68
113	Biomimetic fabrication of information-rich phenolic-chitosan films. Soft Matter, 2011, 7, 9601.	1.2	51
114	Biofabrication with Biopolymers and Enzymes: Potential for Constructing Scaffolds from Soft Matter. International Journal of Artificial Organs, 2011, 34, 215-224.	0.7	23
115	Biofabrication: Enlisting the Unique Capabilities of Biological Polymers for Hierarchical Construction. ACS Symposium Series, 2011, , 61-71.	0.5	0
116	Reversible Electroaddressing of Selfâ€assembling Aminoâ€Acid Conjugates. Advanced Functional Materials, 2011, 21, 1575-1580.	7.8	42
117	Coupling Electrodeposition with Layerâ€by‣ayer Assembly to Address Proteins within Microfluidic Channels. Advanced Materials, 2011, 23, 5817-5821.	11.1	83
118	Inâ€Film Bioprocessing and Immunoanalysis with Electroaddressable Stimuliâ€Responsive Polysaccharides. Advanced Functional Materials, 2010, 20, 1645-1652.	7.8	36
119	Biomimetic Approach to Confer Redox Activity to Thin Chitosan Films. Advanced Functional Materials, 2010, 20, 2683-2694.	7.8	109
120	Biofabrication to build the biology–device interface. Biofabrication, 2010, 2, 022002.	3.7	94
121	Biofabrication Based on the Enzyme-Catalyzed Coupling and Crosslinking of Pre-Formed Biopolymers. ACS Symposium Series, 2010, , 35-44.	0.5	5
122	In situ quantitative visualization and characterization of chitosan electrodeposition with paired sidewall electrodes. Soft Matter, 2010, 6, 3177.	1.2	150
123	Electroaddressing of Cell Populations by Coâ€Đeposition with Calcium Alginate Hydrogels. Advanced Functional Materials, 2009, 19, 2074-2080.	7.8	115
124	Biomimetic sealant based on gelatin and microbial transglutaminase: An initial <i>in vivo</i> investigation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 5-16.	1.6	61
125	Biofabrication of antibodies and antigens via IgGâ€binding domain engineered with activatable pentatyrosine proâ€ŧag. Biotechnology and Bioengineering, 2009, 103, 231-240.	1.7	30
126	Scanning electrochemical microscopy of one-dimensional nanostructure: Effects of nanostructure dimensions on the tip feedback current under unbiased conditions. Journal of Electroanalytical Chemistry, 2009, 629, 78-86.	1.9	18

Еимкуоимс Кім

#	Article	IF	CITATIONS
127	Orthogonal Enzymatic Reactions for the Assembly of Proteins at Electrode Addresses. Langmuir, 2009, 25, 338-344.	1.6	31
128	Spatially Resolved Detection of a Nanometer-Scale Gap by Scanning Electrochemical Microscopy. Analytical Chemistry, 2009, 81, 4788-4791.	3.2	19
129	Crosslinking Lessons From Biology: Enlisting Enzymes for Macromolecular Assembly. Journal of Adhesion, 2009, 85, 576-589.	1.8	23
130	Chitosan-Coated Wires: Conferring Electrical Properties to Chitosan Fibers. Biomacromolecules, 2009, 10, 858-864.	2.6	46
131	Novel approach for generating an electrochemically active film with amplification, switching and diode-like behavior. , 2009, , .		Ο
132	Protein assembly onto patterned microfabricated devices through enzymatic activation of fusion proâ€ŧag. Biotechnology and Bioengineering, 2008, 99, 499-507.	1.7	32
133	Towards areaâ€based in vitro metabolic engineering: Assembly of Pfs enzyme onto patterned microfabricated chips. Biotechnology Progress, 2008, 24, 1042-1051.	1.3	19
134	A Structureâ^'Permeability Relationship of Ultrathin Nanoporous Silicon Membrane:  A Comparison with the Nuclear Envelope. Journal of the American Chemical Society, 2008, 130, 4230-4231.	6.6	52
135	Programmable assembly of a metabolic pathway enzyme in a pre-packaged reusable bioMEMS device. Lab on A Chip, 2008, 8, 420.	3.1	53
136	Chitosan: a soft interconnect for hierarchical assembly of nano-scale components. Soft Matter, 2007, 3, 521.	1.2	113
137	Chitosan-mediated in situ biomolecule assembly in completely packaged microfluidic devices. Lab on A Chip, 2006, 6, 1315.	3.1	68
138	Tyrosine-based "Activatable Pro-Tag― Enzyme-catalyzed protein capture and release. Biotechnology and Bioengineering, 2006, 93, 1207-1215.	1.7	50
139	Gelatin-based biomimetic tissue adhesive. Potential for retinal reattachment. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 77B, 416-422.	1.6	72
140	Signal-Directed Sequential Assembly of Biomolecules on Patterned Surfaces. Langmuir, 2005, 21, 2104-2107.	1.6	46
141	Biofabrication with Chitosan. Biomacromolecules, 2005, 6, 2881-2894.	2.6	667
142	Biofabrication: using biological materials and biocatalysts to construct nanostructured assemblies. Trends in Biotechnology, 2004, 22, 593-599.	4.9	108
143	Enzymatic Grafting of Peptides from Casein Hydrolysate to Chitosan. Potential for Value-Added Byproducts from Food-Processing Wastes. Journal of Agricultural and Food Chemistry, 2004, 52, 788-793.	2.4	77
144	Mechanical Properties of Biomimetic Tissue Adhesive Based on the Microbial Transglutaminase-Catalyzed Crosslinking of Gelatin. Biomacromolecules, 2004, 5, 1270-1279.	2.6	164

Еимкуоимс Кім

#	Article	IF	CITATIONS
145	Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials, 2003, 24, 2831-2841.	5.7	324
146	Enzymatic Methods for in Situ Cell Entrapment and Cell Release. Biomacromolecules, 2003, 4, 1558-1563.	2.6	73
147	Nature-Inspired Creation of Proteinâ^'Polysaccharide Conjugate and Its Subsequent Assembly onto a Patterned Surface. Langmuir, 2003, 19, 9382-9386.	1.6	102
148	Electrochemically Induced Deposition of a Polysaccharide Hydrogel onto a Patterned Surface. Langmuir, 2003, 19, 4058-4062.	1.6	184
149	Utilizing Renewable Resources To Create Functional Polymers:Â Chitosan-Based Associative Thickener. Environmental Science & Technology, 2002, 36, 3446-3454.	4.6	64
150	In vitro protein-polysaccharide conjugation: Tyrosinase-catalyzed conjugation of gelatin and chitosan. Biopolymers, 2002, 64, 292-302.	1.2	176
151	Voltage-Dependent Assembly of the Polysaccharide Chitosan onto an Electrode Surface. Langmuir, 2002, 18, 8620-8625.	1.6	283
152	Chitosan Based Water-Resistant Adhesive. Analogy to Mussel Glue. Biomacromolecules, 2000, 1, 252-258.	2.6	198
153	Orthogonal Redox and Optical Stimuli Can Induce Independent Responses for Catechol-Chitosan Films. Materials Chemistry Frontiers, 0, , .	3.2	3