
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8409719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient near-infrared quantum cutting by cooperative energy transfer in Bi3TeBO9:Nd3+ phosphors. Journal of Materials Science, 2022, 57, 185-203.	1.7	7
2	Pilot-Scale Studies of WO3/S-Doped g-C3N4 Heterojunction toward Photocatalytic NOx Removal. Materials, 2022, 15, 633.	1.3	10
3	Pressure -induced changes in the persistent luminescence of Gd _{2.994} Ce _{0.006} Ga ₃ Al ₂ O ₁₂ and Gd _{2.964} Ce _{0.006} Dy _{0.03} Ga ₃ Al ₂ Al _{Al₂Al_{Al₂Al_{Al₂Al_{Al}}	_{0>} 1.6	2
4	Effect of Graphene Addition on the Thermal and Persistent Luminescence Properties of Gd2.994Ce0.006Ga3Al2O12 and Gd2.964Ce0.006Dy0.03Ga3Al2O12 Ceramics. Materials, 2022, 15, 2606.	1.3	0
5	Insights into the Relationship between Crystallite Size, Sintering Pressure, Temperature Sensitivity, and Persistent Luminescence Color of Gd _{2.97} Pr _{0.03} Ga ₃ Al ₂ O ₁₂ Powders and Ceramics, Iournal of Physical Chemistry C. 2022, 126, 7127-7142.	1.5	8
6	Assessment of SnO2-nanocrystal-based luminescent glass-ceramic waveguides for integrated photonics. Ceramics International, 2021, 47, 5534-5541.	2.3	17
7	Efficient Yb3+ sensitized Er3+ emission of Bi2ZnOB2O6:Yb3+/Er3+ single crystal. Journal of Alloys and Compounds, 2021, 873, 159772.	2.8	8
8	Electronic structure engineering of Gd2.97Tb0.03Ga5â^'xAlxO12 persistent luminescence phosphors. Journal of Alloys and Compounds, 2021, 889, 161745.	2.8	2
9	Design of the persistent luminescence colour of a novel Gd _{3â^'x} Tb _x Ga ₃ Al ₂ O ₁₂ phosphor: synthesis methods, spectroscopic properties and mechanism. Dalton Transactions, 2021, 50, 4830-4839.	1.6	9
10	Crystalline LiPON as a Bulk-Type Solid Electrolyte. ACS Energy Letters, 2021, 6, 445-450.	8.8	43
11	Scheelite-Type Wide-Bandgap ABO ₄ Compounds (A = Ca, Sr, and Ba; B = Mo and W) as Potential Photocatalysts for Water Treatment. Journal of Physical Chemistry C, 2021, 125, 25497-25513.	1.5	15
12	Impact of the Synthesis Method on the Conventional and Persistent Luminescence in Gd _{3–<i>x</i>} Ce _{<i>x</i>} Ga ₃ Al ₂ O ₁₂ . Inorganic Chemistry, 2021, 60, 18777-18788.	1.9	8
13	A Facile Synthesis and Characterization of Highly Crystalline Submicro-Sized BiFeO3. Materials, 2020, 13, 3035.	1.3	16
14	Laser induced emission spectra of gallium nitride nanoceramics. Ceramics International, 2020, 46, 29060-29066.	2.3	16
15	Impact of Alkali Ions Codoping on Magnetic Properties of La0.9A0.1Mn0.9Co0.1O3 (A: Li, K, Na) Powders and Ceramics. Applied Sciences (Switzerland), 2020, 10, 8786.	1.3	2
16	Nanoscale ferroelectricity in pseudo-cubic sol-gel derived barium titanate - bismuth ferrite (BaTiO3–) Tj ETQqO () 0 rgBT /C)verlock 10 ⁻

17	Preparation and physical characteristics of graphene ceramics. Scientific Reports, 2020, 10, 11121.	1.6	13
18	Magnetic Properties of La0.9A0.1MnO3 (A: Li, Na, K) Nanopowders and Nanoceramics. Materials, 2020, 13, 1788.	1.3	6

#	Article	IF	CITATIONS
19	Photonic glass ceramics based on SnO2 nanocrystals: advances and perspectives. , 2020, , .		2
20	Modeling and parameter recovering of rare-earth-doped/co-doped glass and glass ceramics optical devices. , 2020, , .		0
21	Design of active devices based on rare-earth-doped glass/glass ceramic: from the material characterization to the device parameter refinement. , 2020, , .		1
22	"Frozen―pressure effect in GGAG:Ce3+ white light emitting nanoceramics. Ceramics International, 2019, 45, 21870-21877.	2.3	7
23	SiO2-SnO2 Photonic Glass-Ceramics. , 2019, , .		1
24	Optical, Dielectric and Magnetic Properties of La1â^'xNdxFeO3 Powders and Ceramics. Ceramics, 2019, 2, 1-12.	1.0	7
25	Key factors tuning upconversion and near infrared luminescence in nanosized Lu2O3:Er3+,Yb3+. Journal of Alloys and Compounds, 2019, 799, 481-494.	2.8	14
26	Laser-driven proliferation of sp2-sp3 changes during anti-Stokes white light emission of μ-diamonds. Carbon, 2019, 146, 438-446.	5.4	18
27	Enhanced 1.5 μm emission of Er ³⁺ -doped multifunctional Bi ₂ ZnOB ₂ O ₆ microcrystals. Dalton Transactions, 2019, 48, 6283-6290.	1.6	10
28	Scintillation properties of Gd3Al2Ga3O12:Ce (GAGG:Ce): a comparison between monocrystalline and nanoceramic samples. Optical Materials, 2018, 79, 227-231.	1.7	12
29	Near-infrared luminescence of Bi2ZnOB2O6:Nd3+/PMMA composite. Optical Materials, 2018, 75, 13-18.	1.7	11
30	Persistent luminescence warm-light LEDs based on Ti-doped RE ₂ O ₂ S materials prepared by rapid and energy-saving microwave-assisted synthesis. Journal of Materials Chemistry C, 2018, 6, 8897-8905.	2.7	39
31	Nd3+-doped Bi2ZnOB2O6 phosphors for NIR emission. Journal of Luminescence, 2018, 203, 663-669.	1.5	8
32	Bifunctional Bi2ZnOB2O6 single crystals doped with Nd3+ or Pr3+: luminescence and µ-Raman investigations. , 2018, , .		0
33	Laser induced white lighting of graphene foam. Scientific Reports, 2017, 7, 41281.	1.6	70
34	Bifunctional Bi ₂ ZnOB ₂ O ₆ :Nd ³⁺ Single Crystal for Near Infrared Lasers: Luminescence and μ-Raman Investigations. Crystal Growth and Design, 2017, 17, 3656-3664.	1.4	23
35	Size Effect in Novel Red Efficient Garnet Nanophosphor. Journal of Physical Chemistry C, 2017, 121, 25561-25567.	1.5	18
36	Structural, optical and phonon properties of formate-based MOF phosphors with ethylammonium cations. Physical Chemistry Chemical Physics, 2017, 19, 22733-22742.	1.3	5

#	Article	IF	CITATIONS
37	Up-conversion luminescence of rare earth-doped KGd(WO4)2 phosphors for tunable multicolour light generation. New Journal of Chemistry, 2017, 41, 9847-9856.	1.4	5
38	Visible and near-infrared up-conversion luminescence of KGd(WO4)2 micro-crystals doped with Er3+, Tm3+, Ho3+ and Yb3+ ions. Journal of Alloys and Compounds, 2016, 684, 271-281.	2.8	23
39	Mechanisms of Tenebrescence and Persistent Luminescence in Synthetic Hackmanite Na ₈ Al ₆ Si ₆ O ₂₄ (Cl,S) ₂ . ACS Applied Materials & Interfaces, 2016, 8, 11592-11602.	4.0	32
40	Up-conversion luminescence and µ-Raman investigations of KGd(WO <inf>4</inf>) <inf>2</inf> crystalline powders doped with rare earth ions. , 2016, , .		0
41	Photoluminescence properties of Pr3+ doped Bi2ZnOB2O6 microcrystals and PMMA-based composites. Optical Materials, 2016, 62, 72-79.	1.7	11
42	The influence of temperature, pressure and Ag doping on the physical properties of TiO ₂ nanoceramics. Nanoscale, 2016, 8, 19703-19713.	2.8	5
43	Synthesis, structure and optical properties of two novel luminescent polar dysprosium metal–organic frameworks: [(CH ₃) ₂ NH ₂][Dy(HCOO) ₄] and [N ₂ H ₅][Dy(HCOO) ₄]. Journal of Materials Chemistry C, 2016, 4,	2.7	16
44	1019-1020. Effect of the glass melting condition on the processing of phosphate-based glass–ceramics with persistent luminescence properties. Optical Materials, 2016, 52, 56-61.	1.7	12
45	Persistent Photoconductance in Graphene Ceramics. Physics Procedia, 2015, 76, 155-159.	1.2	9
46	Optically stimulated persistent luminescence of europium-doped LaAlO ₃ nanocrystals. Physical Chemistry Chemical Physics, 2015, 17, 17246-17252.	1.3	32
47	Laser-induced white-light emission from graphene ceramics–opening a band gap in graphene. Light: Science and Applications, 2015, 4, e237-e237.	7.7	122
48	An Approach in the Structural and Spectroscopic Analysis of Yb3+-Doped YAG Nano-ceramics by Conjugation of TEM-EDX and Optical Techniques. NATO Science for Peace and Security Series B: Physics and Biophysics, 2015, , 285-307.	0.2	0
49	Tailoring structure and electric transport properties of the magnetic iron boron nitride nanoceramics. Journal of Magnetism and Magnetic Materials, 2015, 384, 144-147.	1.0	1
50	Processing and characterization of phosphate glasses containing CaAl2O4:Eu2+,Nd3+ and SrAl2O4:Eu2+,Dy3+ microparticles. Journal of the European Ceramic Society, 2015, 35, 3863-3871.	2.8	28
51	Spectroscopic properties of Bi2ZnOB2O6 single crystals doped with Pr3+ ions: Absorption and luminescence investigations. Optical Materials, 2015, 47, 428-434.	1.7	21
52	Persistent Luminescence of Tenebrescent Na8Al6Si6O24(Cl,S)2: Multifunctional Optical Markers. Inorganic Chemistry, 2015, 54, 7717-7724.	1.9	22
53	New alternative route for the preparation of phosphate glasses with persistent luminescence properties. Journal of the European Ceramic Society, 2015, 35, 1255-1261.	2.8	25
54	Gas phase hydrogen absorption and electrochemical performance of La2(Ni,Co,Mg,M)10 based alloys. International Journal of Hydrogen Energy, 2014, 39, 2423-2429.	3.8	7

#	Article	IF	CITATIONS
55	High saturation ferromagnetic behavior of Fe: <scp>BN</scp> nanoceramic. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 696-699.	0.8	1
56	Yb ³⁺ Ions Distribution in YAG Nanoceramics Analyzed by Both Optical and TEM-EDX Techniques. Journal of Physical Chemistry C, 2014, 118, 15474-15486.	1.5	27
57	Spectroscopic properties of KGd(WO4)2 single crystals doped with Er3+, Ho3+, Tm3+ and Yb3+ ions: Luminescence and micro-Raman investigations. Journal of Alloys and Compounds, 2013, 577, 687-692.	2.8	18
58	Studies of upconversion emission of Yb3+, Er3+:Lu2O3 nanoceramics. Optical Materials, 2013, 35, 731-734.	1.7	10
59	Luminescence and excitation spectra of Cr3+:MgAl2O4 nanoceramics. Materials Chemistry and Physics, 2013, 140, 222-227.	2.0	36
60	Infrared laser stimulated broadband white emission of Yb3+:YAG nanoceramics. Optical Materials, 2013, 35, 2013-2017.	1.7	53
61	Spectroscopic properties of Nd3+ in MgAl2O4 spinel nanocrystals. Journal of Alloys and Compounds, 2012, 525, 39-43.	2.8	22
62	Comparative studies on structural and luminescent properties of Eu3+:MgAl2O4 and Eu3+/Na+:MgAl2O4 nanopowders and nanoceramics. Optical Materials, 2012, 35, 130-135.	1.7	29
63	The time-resolved luminescence characteristics of Ce and Ce/Pr doped YAG ceramics obtained by high pressure technique. Optical Materials, 2012, 34, 986-989.	1.7	11
64	Influence of Pressureâ€Induced Transition from Nanocrystals to Nanoceramic Form on Optical Properties of Ceâ€Doped Y ₃ Al ₅ O ₁₂ . Journal of the American Ceramic Society, 2011, 94, 2135-2140.	1.9	21
65	Up-conversion emission in KGd(WO4)2 single crystals triply-doped with Er3+/Yb3+/Tm3+, Tb3+/Yb3+/Tm3+ and Pr3+/Yb3+/Tm3+ ions. Optical Materials, 2011, 33, 1595-1601.	1.7	22
66	Magnetic studies of GaN nanoceramics doped with 1% of cerium. Journal of Rare Earths, 2011, 29, 1183-1187.	2.5	5
67	Up-conversion emission in triply-doped Ho3+/Yb3+/Tm3+ KGd(WO4)2 single crystals. Optics Communications, 2011, 284, 2895-2899.	1.0	13
68	Enhancement of luminescence properties of Eu3+:YVO4 in polymeric nanocomposites upon UV excitation. Journal of Luminescence, 2011, 131, 473-476.	1.5	29
69	Spectroscopic properties of Yb3+-doped Y3Al5O12 nano-ceramics obtained under different sintering pressures. Radiation Measurements, 2010, 45, 304-306.	0.7	18
70	Transport properties, specific heat and thermal conductivity of GaN nanocrystalline ceramic. Journal of Solid State Chemistry, 2010, 183, 2501-2505.	1.4	7
71	Synthesis, structural and optical characterization of Eu:KYb(WO4)2 nanocrystals: A promising red phosphor. Optical Materials, 2010, 32, 1493-1500.	1.7	17
72	IR and Raman spectroscopy study of YAG nanoceramics. Chemical Physics Letters, 2010, 494, 279-283.	1.2	49

#	Article	IF	CITATIONS
73	A Promising Lu _{2â^'<i>x</i>} Ho <i>_x</i> O ₃ Laser Nanoceramic:Synthesis and Characterization. Journal of the American Ceramic Society, 2010, 93, 3764-3772.	1.9	14
74	Electric properties of La0.8Sr0.2CoO3 nanoceramics. Journal of Rare Earths, 2009, 27, 646-650.	2.5	3
75	Luminescence properties of Cr3+:Y3Al5O12 nanocrystals. Journal of Luminescence, 2009, 129, 548-553.	1.5	29
76	Luminescence studies of Cr3+ doped MgAl2O4 nanocrystalline powders. Chemical Physics, 2009, 358, 52-56.	0.9	37
77	Optical Properties of Cr(III) doped YAG Nanoceramics. ECS Transactions, 2009, 25, 113-119.	0.3	1
78	The f–f Emission of Pr ³⁺ Ion as an Optical Probe for the Structural Properties of YAG Nanoceramics. Journal of Nanoscience and Nanotechnology, 2009, 9, 6315-6319.	0.9	17
79	The influence of the specific surface of grains on the luminescence properties of Nd3+-doped Y3Al5O12 nanopowders. Applied Physics B: Lasers and Optics, 2008, 91, 89-93.	1.1	31
80	Spectroscopic characterization of LaAlO3 crystal doped with Tm3+ ions. Optical Materials, 2008, 30, 680-683.	1.7	15
81	Fabrication and luminescence studies of Ce:Y3Al5O12 transparent nanoceramic. Optical Materials, 2008, 30, 714-718.	1.7	40
82	Luminescence properties of rare earth ions in fluorite, apatite and scheelite minerals. Journal of Alloys and Compounds, 2008, 451, 290-292.	2.8	18
83	The concentration dependence of luminescence of Nd:Y3Al5O12 nanoceramics. Journal of Alloys and Compounds, 2008, 451, 549-552.	2.8	19
84	Magnetic behavior of Gd-doped GaN nanoceramics. Journal of Alloys and Compounds, 2008, 451, 500-503.	2.8	6