Qianhong She

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8409652/qianhong-she-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

47
papers

3,554
citations

49
g-index

49
ext. papers

27
h-index

5.65
ext. papers

27
h-index

L-index

#	Paper	IF	Citations
47	Status and advances of deep eutectic solvents for metal separation and recovery. <i>Green Chemistry</i> , 2022 , 24, 1895-1929	10	9
46	How split-feed osmotically assisted reverse osmosis (SF-OARO) can outperform conventional reverse osmosis (CRO) processes under constant and varying electricity tariffs. <i>Desalination</i> , 2022 , 530, 115670	10.3	0
45	Influence of membrane structure-dependent water transport on conductivity-permselectivity trade-off and salt/water selectivity in electrodialysis: Implications for osmotic electrodialysis using porous ion exchange membranes. <i>Journal of Membrane Science</i> , 2022 , 650, 120398	9.6	1
44	A multifunctional and low-energy electrochemical membrane system for chemical-free regulation of solution pH <i>Water Research</i> , 2022 , 216, 118330	12.5	
43	Engineering pressure retarded osmosis membrane bioreactor (PRO-MBR) for simultaneous water and energy recovery from municipal wastewater <i>Science of the Total Environment</i> , 2022 , 154048	10.2	O
42	Mechanistic insights into the degradation of monovalent selective ion exchange membrane towards long-term application of real salt lake brines. <i>Journal of Membrane Science</i> , 2022 , 652, 120446	9.6	1
41	Magnesium-Induced Variation of Polyamide Membrane Behavior for the Treatment of Haloacetic Acids in Swimming Pool Waters. <i>ACS ES&T Water</i> , 2021 , 1, 346-355		1
40	Ammonium ultra-selective membranes for wastewater treatment and nutrient enrichment: Interplay of surface charge and hydrophilicity on fouling propensity and ammonium rejection. Water Research, 2021, 190, 116678	12.5	11
39	Insights into the Influence of Membrane Permeability and Structure on Osmotically-Driven Membrane Processes. <i>Membranes</i> , 2021 , 11,	3.8	1
38	Calcium phosphate scaling in osmotically driven membrane processes: Limiting flux behavior and its implications for scaling mitigation. <i>Journal of Membrane Science</i> , 2021 , 631, 119351	9.6	O
37	Boron and salt ion transport in electrically assisted reverse osmosis. <i>Journal of Membrane Science</i> , 2021 , 637, 119639	9.6	4
36	Digitalization to achieve sustainable development goals: Steps towards a Smart Green Planet. <i>Science of the Total Environment</i> , 2021 , 794, 148539	10.2	58
35	A novel method for the accurate characterization of transport and structural parameters of deformable membranes utilized in pressure- and osmotically driven membrane processes. <i>Journal of Membrane Science</i> , 2021 , 638, 119720	9.6	1
34	Reverse osmosis and forward osmosis fouling: a comparison. <i>Discover Chemical Engineering</i> , 2021 , 1, 1		1
33	Pressure-retarded membrane distillation for simultaneous hypersaline brine desalination and low-grade heat harvesting. <i>Journal of Membrane Science</i> , 2020 , 597, 117765	9.6	16
32	Membrane structure-dependent limiting flux behavior and membrane selectivity loss during gypsum scaling: Implications for pressure-retarded osmosis operation and membrane design. <i>Desalination</i> , 2020 , 492, 114644	10.3	3
31	Forward osmosis concentration of a vanadium leaching solution. <i>Journal of Membrane Science</i> , 2019 , 582, 164-171	9.6	10

(2013-2019)

30	Pressure-retarded membrane distillation for low-grade heat recovery: The critical roles of pressure-induced membrane deformation. <i>Journal of Membrane Science</i> , 2019 , 579, 90-101	9.6	20
29	Effect of driving force on the performance of anaerobic osmotic membrane bioreactors: New insight into enhancing water flux of FO membrane via controlling driving force in a two-stage pattern. <i>Journal of Membrane Science</i> , 2019 , 569, 41-47	9.6	22
28	Osmotic membrane bioreactors assisted with microfiltration membrane for salinity control (MF-OMBR) operating at high sludge concentrations: Performance and implications. <i>Chemical Engineering Journal</i> , 2018 , 337, 576-583	14.7	29
27	Removal of cytostatic drugs from wastewater by an anaerobic osmotic membrane bioreactor. <i>Chemical Engineering Journal</i> , 2018 , 339, 153-161	14.7	43
26	Exploring the differences between forward osmosis and reverse osmosis fouling. <i>Journal of Membrane Science</i> , 2018 , 565, 241-253	9.6	72
25	Module scale-up and performance evaluation of thin film composite hollow fiber membranes for pressure retarded osmosis. <i>Journal of Membrane Science</i> , 2018 , 548, 398-407	9.6	21
24	Regulation, formation, exposure, and treatment of disinfection by-products (DBPs) in swimming pool waters: A critical review. <i>Environment International</i> , 2018 , 121, 1039-1057	12.9	51
23	Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration. <i>Water Research</i> , 2017 , 116, 116-125	12.5	54
22	Pressure-retarded osmosis with wastewater concentrate feed: Fouling process considerations. Journal of Membrane Science, 2017 , 542, 233-244	9.6	26
21	Effect of reverse solute diffusion on scaling in forward osmosis: A new control strategy by tailoring draw solution chemistry. <i>Desalination</i> , 2017 , 401, 230-237	10.3	34
20	Role of calcium ions on the removal of haloacetic acids from swimming pool water by nanofiltration: mechanisms and implications. <i>Water Research</i> , 2017 , 110, 332-341	12.5	29
19	Unique roles of aminosilane in developing anti-fouling thin film composite (TFC) membranes for pressure retarded osmosis (PRO). <i>Desalination</i> , 2016 , 389, 119-128	10.3	33
18	Fabrication and characterization of fabric-reinforced pressure retarded osmosis membranes for osmotic power harvesting. <i>Journal of Membrane Science</i> , 2016 , 504, 75-88	9.6	47
17	Membrane fouling in osmotically driven membrane processes: A review. <i>Journal of Membrane Science</i> , 2016 , 499, 201-233	9.6	488
16	MetalBrganic framework-based porous matrix membranes for improving mass transfer in forward osmosis membranes. <i>Journal of Membrane Science</i> , 2015 , 492, 392-399	9.6	62
15	Gypsum scaling in pressure retarded osmosis: experiments, mechanisms and implications. <i>Water Research</i> , 2014 , 48, 387-95	12.5	126
14	Mining nutrients (N, K, P) from urban source-separated urine by forward osmosis dewatering. <i>Environmental Science & Environmental Science & Environme</i>	10.3	118
13	Effect of feed spacer induced membrane deformation on the performance of pressure retarded osmosis (PRO): Implications for PRO process operation. <i>Journal of Membrane Science</i> , 2013 , 445, 170-18	32 ^{9.6}	157

12	Organic fouling in pressure retarded osmosis: Experiments, mechanisms and implications. <i>Journal of Membrane Science</i> , 2013 , 428, 181-189	9.6	140
11	Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO). <i>Membranes</i> , 2013 , 3, 98-125	3.8	44
10	Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density. <i>Journal of Membrane Science</i> , 2012 , 389, 25-33	9.6	271
9	Removal of boron and arsenic by forward osmosis membrane: Influence of membrane orientation and organic fouling. <i>Journal of Membrane Science</i> , 2012 , 389, 182-187	9.6	130
8	Osmotic power production from salinity gradient resource by pressure retarded osmosis: Effects of operating conditions and reverse solute diffusion. <i>Journal of Membrane Science</i> , 2012 , 401-402, 262-273	9.6	277
7	Relating reverse and forward solute diffusion to membrane fouling in osmotically driven membrane processes. <i>Water Research</i> , 2012 , 46, 2478-86	12.5	151
6	Microscopic characterization of FO/PRO membranesa comparative study of CLSM, TEM and SEM. <i>Environmental Science & Environmental Science & Environme</i>	10.3	50
5	Boric acid permeation in forward osmosis membrane processes: modeling, experiments, and implications. <i>Environmental Science & Environmental &</i>	10.3	115
4	Modeling double-skinned FO membranes. <i>Desalination</i> , 2011 , 283, 178-186	10.3	80
3	Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration. <i>Journal of Membrane Science</i> , 2010 , 354, 123-133	9.6	613
2	The role of hydrodynamic conditions and solution chemistry on protein fouling during ultrafiltration. <i>Desalination</i> , 2009 , 249, 1079-1087	10.3	87
1	Investigation of soluble microbial products in a full-scale UASB reactor running at low organic loading rate. <i>Bioresource Technology</i> , 2009 , 100, 3471-6	11	47