Ben Collen

List of Publications by Year in descending order

[^0]
$1 \quad$ Global Biodiversity: Indicators of Recent Declines. Science, 2010, 328, 1164-1168.
6.0
3,642

2 Defaunation in the Anthropocene. Science, 2014, 345, 401-406.
6.0

2,810

3 Global effects of land use on local terrestrial biodiversity. Nature, 2015, 520, 45-50.
$13.7 \quad 2,669$

4 The Status of the World's Land and Marine Mammals: Diversity, Threat, and Knowledge. Science, 2008,
$322,225-230$.
$6.01,215$
4 The Status of the World's Land and Marine Mammals: Diversity, Threat, and Knowledge. Science, 2008,
$322,225-230$.

5 The Impact of Conservation on the Status of the Worldâ $€^{\mathrm{TM}} \mathrm{S}_{\mathrm{S}}$ Vertebrates. Science, 2010, 330, 1503-1509. 6.0

6 Mammals on the EDGE: Conservation Priorities Based on Threat and Phylogeny. PLoS ONE, 2007, 2 , e296.
$1.1 \quad 772$

7 The conservation status of the worldâ€ ${ }^{T M}$ s reptiles. Biological Conservation, 2013, 157, 372-385.
1.9

642

8 A Standard Lexicon for Biodiversity Conservation: Unified Classifications of Threats and Actions. 8 Conservation Biology, 2008, 22, 897-911.
Large mammal population declines in Africaâ $€^{T M}$ s protected areas. Biological Conservation, 2010, 143,
2221-2228.
Clobal patterns of freshwater species diversity, threat and endemism. Global Ecology and
Biogeography, 2014, 23, 40-51.
11 The global distribution of tetrapods reveals a need for targeted reptile conservation. Nature Ecology
and Evolution, 2017, 1, 1677-1682.

12 Monitoring Change in Vertebrate Abundance: the Living Planet Index. Conservation Biology, 2009, 23,
317-327.
2.4

336
13 Odonata enter the biodiversity crisis debate: The first global assessment of an insect group.
13 Biological Conservation, 2009, 142, 1864-1869.

Freshwater crabs and the biodiversity crisis: Importance, threats, status, and conservation challenges. Biological Conservation, 2009, 142, 1665-1673.
1.9

260
Biodiversity in a forest-agriculture mosaic $\hat{a} €^{\prime \prime}$ The changing face of West African rainforests
Biological Conservation, 2010, 143, 2341-2350.

The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq0 $00_{0.8}$ rgBT /Overlock 10 T
\(\left.\begin{array}{llll}The <scp>PREDICTS</scp> database: a global database of how local terrestrial biodiversity responds to

human impacts. Ecology and Evolution, 2014, 4, 4701-4735.\end{array}\right]\)	178

26 Establishing IUCN Red List Criteria for Threatened Ecosystems. Conservation Biology, 2011, 25, 21-29.
Wildlife population trends in protected areas predicted by national socio-economic metrics and body
size. Nature Communications, 2016, 7, 12747.

28 Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nature Ecology
and Evolution, 2020, 4, 384-392.
33 The Why, What, and How of Global Biodiversity Indicators Beyond the 2010 Target. Conservation Biology, 2011, 25, 450-457.2.4109

The use of opportunistic data for IUCN Red List assessments. Biological Journal of the Linnean Society,
2015, 115, 690-706.

\#	Article	IF	Citations
37	Antarctica and the strategic plan for biodiversity. PLoS Biology, 2017, 15, e2001656.	2.6	82
38	Biological correlates of description date in carnivores and primates. Global Ecology and Biogeography, 2004, 13, 459-467.	2.7	81
39	Complexity is costly: a metaâ€analysis of parametric and nonâ€parametric methods for shortâ€term population forecasting. Oikos, 2014, 123, 652-661.	1.2	81
40	National Red Listing Beyond the 2010 Target. Conservation Biology, 2010, 24, 1012-1020.	2.4	80
41	Toward reassessing dataâ€deficient species. Conservation Biology, 2017, 31, 531-539.	2.4	75
42	Making Robust Policy Decisions Using Clobal Biodiversity Indicators. PLoS ONE, 2012, 7, e41128.	1.1	75
43	Global biodiversity monitoring. Frontiers in Ecology and the Environment, 2010, 8, 459-460.	1.9	70
44	Linked indicator sets for addressing biodiversity loss. Oryx, 2011, 45, 411-419.	0.5	70
45	Global effects of land use on biodiversity differ among functional groups. Functional Ecology, 2020, 34, 684-693.	1.7	69
46	The conservation status of the worldâ€ ${ }^{T M}$ s freshwater molluscs. Hydrobiologia, 2021, 848, 3231-3254.	1.0	68
47	Simplification of Caribbean Reef-Fish Assemblages over Decades of Coral Reef Degradation. PLoS ONE, 2015, 10, e0126004.	1.1	68
48	Taking the measure of change. Science, 2014, 346, 166-167.	6.0	59
49	Inferring species extinction: the use of sighting records. Methods in Ecology and Evolution, 2015, 6, 678-687.	2.2	59

50 Correlates of extinction risk: phylogeny, biology, threat and scale. , 2001, , 295-316. 52
Temporal correlations in population trends: Conservation implications from time-series analysis of
diverse animal taxa. Biological Conservation, 2015, 192, 247-257.

Reconciling Biodiversity Indicators to Guide Understanding and Action. Conservation Letters, 2016, 9,

Extinction Risk: A Comparative Analysis of Central Asian Vertebrates. Biodiversity and Conservation,
1.2
Experimentally testing the accuracy of an extinction estimator: <scp>S</scp>olow's optimal linear
estimation model. Journal of Animal Ecology, 2013, 82, 345-354.

Costâ $€$ effective assessment of extinction risk with limited information. Journal of Applied Ecology, 2015,
1.9

43
52, 861-870.

A global analysis of the determinants of alien geographical range size in birds. Global Ecology and
2.7

Biogeography, 2016, 25, 1346-1355.

Prior specification in Bayesian occupancy modelling improves analysis of species occurrence data.
Ecological Indicators, 2018, 93, 333-343.
2.6
59

A new method for identifying rapid decline dynamics in wild vertebrate populations. Ecology and
Evolution, 2013, 3, 2378-2391.
0.8

Long-term trends in the abundance of Mediterranean wetland vertebrates: From global recovery to
localized declines. Biological Conservation, 2011, 144, 1392-1399.
1.9

40

61 Data uncertainty and the selectivity of extinction risk in freshwater invertebrates. Diversity and
Distributions, 2012, 18, 1211-1220.
1.9

40

Population and geographic range dynamics: implications for conservation planning. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3743-3751.
1.8
record to inform conservation assessment. Diversity and Distributions, 2010, 16, 755-764.
1.9

37

64 Red flags: correlates of impaired species recovery. Trends in Ecology and Evolution, 2012, 27, 542-546.
4.2

34

65 Bridging the biodiversity data gaps: Recommendations to meet usersâ€ ${ }^{T M}$ data needs. Biodiversity

65 Informatics, 2013, 8, .
$3.0 \quad 33$

66 The Population Decline and Extinction of Darwinâ $€^{\mathrm{TM}}$ s Frogs. PLoS ONE, 2013, 8, e66957.
1.1

31

67 Historical drivers of extinction risk: using past evidence to direct future monitoring. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150928.

Indicators for wild animal offtake: methods and case study for African mammals and birds. Ecology and Society, 2015, 20, .
1.0

29

Global evolutionary isolation measures can capture key local conservation species in Nearctic and
69 Neotropical bird communities. Philosophical Transactions of the Royal Society B: Biological Sciences,
1.8

28
2015, 370, 20140013.

Interactions between assembly order and temperature can alter both shortâ€•and longâ€term community
composition. Ecology and Evolution, 2013, 3, 5201-5208.

Rapoport's rule and determinants of species range size in snakes. Diversity and Distributions, 2017, 23,
73
74
Strict protected areas are essential for the conservation of larger and threatened mammals in a
1.9

74 Global Biodiversity Indicators Reflect the Modeled Impacts of Protected Area Policy Change. Conservation Letters, 2016, 9, 14-20.
2.8

24

Long-term data for endemic frog genera reveal potential conservation crisis in the Bale Mountains,
Ethiopia. Oryx, 2013, 47, 59-69.
$0.5 \quad 22$

76 Using decision science to evaluate global biodiversity indices. Conservation Biology, 2021, 35, 492-501.
2.4

20
77 Accelerating the monitoring of global biodiversity: Revisiting the sampled approach to generating Red
List Indices. Conservation Letters, 2020, 13, e12703.
$2.8 \quad 19$

78 Bias, incompleteness and the $\hat{a} €^{\wedge}$ known unknownsâ $€^{T M}$ in the Holocene faunal record. Philosophical
Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190216.
1.8
2.4
17

Monitoring extinction risk and threats of the worldâ $\epsilon^{T M} s$ fishes based on the Sampled Red List Index.

Reviews in Fish Biology and Fisheries, 2022, 32, 975-991.
79 Monitoring extinction risk and threats of the worldâms2.417
80 Pragmatism and Practice in Classifying Threats: Reply to Balmford et al.. Conservation Biology, 2009, 23, 488-493.
81 Field surveys for the Endangered pygmy hippopotamus <i>Choeropsis liberiensis</i> in Sapo National
81 Park, Liberia. Oryx, 2011, 45, 35-37.0.515
82 Use it or lose it: measuring trends in wild species subject to substantial use. Oryx, 2014, 48, 420-429.0.515
83 The present and future effects of land use on ecological assemblages in tropical grasslands and
savannas in Africa. Oikos, 2017, 126, 1760-1769. 1.2 15
84 Barometer of Life: Sampling. Science, 2010, 329, 140-140. 6.0 14
The Arctic Species Trend Index: using vertebrate population trends to monitor the health of a rapidly 0.5 14
85 changing ecosystem. Biodiversity, 2012, 13, 144-156.
1.5 14
86 Conservation prioritization in the context of uncertainty. Animal Conservation, 2015, 18, 315-317.
87 Effects of Recent Environmental Change on Accuracy of Inferences of Extinction Status. 2.4 11
Conservation Biology, 2014, 28, 971-981.National Indicators Show Biodiversity Progressâ€"Response. Science, 2010, 329, 900-901.

92 Effects of directional environmental change on extinction dynamics in experimental microbial communities are predicted by a simple model. Oikos, 2014, 123, 141-150.

94 Toward equality of biodiversity knowledge through technology transfer. Conservation Biology, 2015,
Patterns of mammalian population decline inform conservation action. Journal of Applied Ecology,
$2016,53,1046-1054$.

96 Timeâ€łapse cameras reveal latitude and season influence breeding phenology durations in penguins.

98 An assessment of threats to Anatidae in Iran. Bird Conservation International, 2015, 25, 242-257.

99	Assessing the conservation value of secondary savanna for large mammals in the Brazilian Cerrado. Biotropica, 2017, 49, 734-744.	0.8	7
100	Practitioner and scientist perceptions of successful amphibian conservation. Conservation Biology, 2018, 32, 366-375.	2.4	7
101	Species loss: lack of data leaves a gap. Nature, 2016, 537, 488-488.	13.7	6

[^0]: Source: https://exaly.com/author-pdf/8408900/publications.pdf
 Version: 2024-02-01

