
Sheng Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8408866/publications.pdf Version: 2024-02-01

SHENC DENC

#	Article	IF	CITATIONS
1	Origin and characterization of Eagle Ford pore networks in the south Texas Upper Cretaceous shelf. AAPG Bulletin, 2017, 101, 387-418.	1.5	126
2	Using X-ray computed tomography in pore structure characterization for a Berea sandstone: Resolution effect. Journal of Hydrology, 2012, 472-473, 254-261.	5.4	112
3	Relationships among air-water interfacial area, capillary pressure, and water saturation for a sandy porous medium. Water Resources Research, 2006, 42, .	4.2	76
4	Resolution effect in X-ray microcomputed tomography imaging and small pore's contribution to permeability for a Berea sandstone. Journal of Hydrology, 2014, 510, 403-411.	5.4	70
5	Pore types, pore-network analysis, and pore quantification of the lacustrine shale-hydrocarbon system in the Late Triassic Yanchang Formation in the southeastern Ordos Basin, China. Interpretation, 2017, 5, SF63-SF79.	1.1	68
6	Permeability measurements in mudrocks using gas-expansion methods on plug and crushed-rock samples. Marine and Petroleum Geology, 2016, 73, 299-310.	3.3	57
7	Investigation of multiphase fluid imbibition in shale through synchrotronâ€based dynamic microâ€CT imaging. Journal of Geophysical Research: Solid Earth, 2017, 122, 4475-4491.	3.4	57
8	An Integrated Method for Upscaling Pore-Network Characterization and Permeability Estimation: Example from the Mississippian Barnett Shale. Transport in Porous Media, 2015, 109, 359-376.	2.6	56
9	Application of mercury injection capillary pressure to mudrocks: Conformance and compression corrections. Marine and Petroleum Geology, 2017, 88, 30-40.	3.3	52
10	Diffusivity of rocks: Gas diffusion measurements and correlation to porosity and pore size distribution. Water Resources Research, 2012, 48, .	4.2	49
11	Controls on pore types and pore-size distribution in the Upper Triassic Yanchang Formation, Ordos Basin, China: Implications for pore-evolution models of lacustrine mudrocks. Interpretation, 2017, 5, SF127-SF148.	1.1	41
12	Permeability estimation based on thin-section image analysis and 2D flow modeling in grain-dominated carbonates. Marine and Petroleum Geology, 2016, 77, 763-775.	3.3	15
13	Gas-water relative permeability of unconventional reservoir rocks: Hysteresis and influence on production after shut-in. Journal of Natural Gas Science and Engineering, 2020, 82, 103511.	4.4	13
14	Advanced understanding of gas flow and the Klinkenberg effect in nanoporous rocks. Journal of Petroleum Science and Engineering, 2021, 206, 109047.	4.2	12
15	Steam and air co-injection in removing residual TCE in unsaturated layered sandy porous media. Journal of Contaminant Hydrology, 2013, 153, 24-36.	3.3	11
16	Tracerâ€Guided Characterization of Dominant Pore Networks and Implications for Permeability and Wettability in Shale. Journal of Geophysical Research: Solid Earth, 2019, 124, 1459-1479.	3.4	10
17	Gas Relative Permeability and its Evolution During Water Imbibition in Unconventional Reservoir Rocks: Direct Laboratory Measurement and a Conceptual Model. SPE Reservoir Evaluation and Engineering, 2019, 22, 1346-1359.	1.8	10
18	Water-Oil Displacement in Shale: New Insights from a Comparative Study Integrating Imbibition Tests and Multiscale Imaging. SPE Journal, 2021, , 1-15.	3.1	10

#	Article	IF	CITATIONS
19	Water Imbibition and Oil Recovery in Shale: Dynamics and Mechanisms Using Integrated Centimeter-to-Nanometer-Scale Imaging. SPE Reservoir Evaluation and Engineering, 2023, 26, 51-63.	1.8	5
20	Matrix reservoir quality of the Upper Cretaceous Austin Chalk Group and evaluation of reservoir-quality analysis methods; northern onshore Gulf of Mexico, U.S.A Marine and Petroleum Geology, 2021, 134, 105323.	3.3	3