Horacio V Guzman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8408843/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing the Stability of Biological Fibrils by Molecular-Scale Simulations. Methods in Molecular Biology, 2022, 2340, 357-378.	0.9	1
2	Tuning Contact Angles of Aqueous Droplets on Hydrophilic and Hydrophobic Surfaces by Surfactants. Journal of Physical Chemistry B, 2022, 126, 3374-3384.	2.6	18
3	Structural 3D Domain Reconstruction of the RNA Genome from Viruses with Secondary Structure Models. Viruses, 2021, 13, 1555.	3.3	15
4	RNA Secondary Structures Regulate Adsorption of Fragments onto Flat Substrates. ACS Omega, 2021, 6, 32823-32831.	3.5	7
5	Free Energies of the Disassembly of Viral Capsids from a Multiscale Molecular Simulation Approach. Journal of Chemical Information and Modeling, 2020, 60, 974-981.	5.4	24
6	Quantitative determination of mechanical stability in the novel coronavirus spike protein. Nanoscale, 2020, 12, 16409-16413.	5.6	49
7	Characterization of Structural and Energetic Differences between Conformations of the SARS-CoV-2 Spike Protein. Materials, 2020, 13, 5362.	2.9	46
8	Mechanical and thermodynamic properties of Aβ ₄₂ , Aβ ₄₀ , and α-synuclein fibrils: a coarse-grained method to complement experimental studies. Beilstein Journal of Nanotechnology, 2019, 10, 500-513.	2.8	30
9	ESPResSo++ 2.0: Advanced methods for multiscale molecular simulation. Computer Physics Communications, 2019, 238, 66-76.	7.5	30
10	Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes. Physical Review E, 2017, 96, 053311.	2.1	9
11	Scaling law to determine peak forces in tapping-mode AFM experiments on finite elastic soft matter systems. Beilstein Journal of Nanotechnology, 2017, 8, 968-974.	2.8	6
12	Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments. Beilstein Journal of Nanotechnology, 2015, 6, 369-379.	2.8	32
13	Peak Forces in High-Resolution Imaging of Soft Matter in Liquid. ACS Nano, 2013, 7, 3198-3204.	14.6	47
14	Peak forces and lateral resolution in amplitude modulation force microscopy in liquid. Beilstein Journal of Nanotechnology, 2013, 4, 852-859.	2.8	14