Nikolas Antonatos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8408696/publications.pdf

Version: 2024-02-01

759055 642610 28 573 12 23 h-index citations g-index papers 32 32 32 651 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	MXene Titanium Carbide-based Biosensor: Strong Dependence of Exfoliation Method on Performance. Analytical Chemistry, 2020, 92, 2452-2459.	3.2	155
2	MAX and MAB Phases: Two-Dimensional Layered Carbide and Boride Nanomaterials for Electrochemical Applications. ACS Applied Nano Materials, 2019, 2, 6010-6021.	2.4	47
3	Positive and Negative Effects of Dopants toward Electrocatalytic Activity of MoS ₂ and WS ₂ : Experiments and Theory. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20383-20392.	4.0	38
4	Non-aqueous solution-processed phosphorene by controlled low-potential electrochemical exfoliation and thin film preparation. Nanoscale, 2020, 12, 2638-2647.	2.8	33
5	Elements beyond graphene: Current state and perspectives of elemental monolayer deposition by bottom-up approach. Applied Materials Today, 2020, 18, 100502.	2.3	29
6	"Top-down―Arsenene Production by Low-Potential Electrochemical Exfoliation. Inorganic Chemistry, 2020, 59, 11259-11265.	1.9	23
7	Large-Scale Production of Nanocrystalline Black Phosphorus Ceramics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7381-7391.	4.0	23
8	Comparison between layered Pt3Te4 and PtTe2 for electrocatalytic reduction reactions. FlatChem, 2021, 29, 100280.	2.8	22
9	Acetonitrile-assisted exfoliation of layered grey and black arsenic: contrasting properties. Nanoscale Advances, 2020, 2, 1282-1289.	2.2	21
10	In Situ Doping of Black Phosphorus by High-Pressure Synthesis. Inorganic Chemistry, 2019, 58, 10227-10238.	1.9	20
11	Rhenium Doping of Layered Transition-Metal Diselenides Triggers Enhancement of Photoelectrochemical Activity. ACS Nano, 2021, 15, 2374-2385.	7.3	19
12	Edge-Hydrogenated Germanene by Electrochemical Decalcification-Exfoliation of CaGe ₂ : Germanene-Enabled Vapor Sensor. ACS Nano, 2021, 15, 16709-16718.	7.3	15
13	Effect of surface chemistry on bio-conjugation and bio-recognition abilities of 2D germanene materials. Nanoscale, 2021, 13, 1893-1903.	2.8	13
14	Self-Powered Broadband Photodetector and Sensor Based on Novel Few-Layered Pd ₃ (PS ₄) ₂ Nanosheets. ACS Applied Materials & Interfaces, 2021, 13, 30806-30817.	4.0	13
15	Black arsenic: a new synthetic method by catalytic crystallization of arsenic glass. Nanoscale, 2020, 12, 5397-5401.	2.8	12
16	Electrochemical Exfoliation of Janus-like BiTel Nanosheets for Electrocatalytic Nitrogen Reduction. ACS Applied Nano Materials, 2021, 4, 590-599.	2.4	12
17	Photocatalytic activity of twist-angle stacked 2D TaS2. Npj 2D Materials and Applications, 2021, 5, .	3.9	12
18	Noncovalent Functionalization of Pnictogen Surfaces: From Small Molecules to 2D Heterostructures. Small, 2019, 15, e1903495.	5.2	11

#	Article	IF	Citations
19	Exfoliated Fe3GeTe2 and Ni3GeTe2 materials as water splitting electrocatalysts. FlatChem, 2022, 32, 100334.	2.8	11
20	Simple Bottom-Up Synthesis of Bismuthene Nanostructures with a Suitable Morphology for Competitive Performance in the Electrocatalytic Nitrogen Reduction Reaction. Inorganic Chemistry, 2022, 61, 5524-5538.	1.9	9
21	Fine-tuning the functionality of reduced graphene oxide via bipolar electrochemistry in freestanding 2D reaction layers. Carbon, 2022, 191, 439-447.	5.4	8
22	Dealloying layered PdBi ₂ nanoflakes to palladium hydride leads to enhanced electrocatalytic N ₂ reduction. Journal of Materials Chemistry A, 2022, 10, 11904-11916.	5.2	6
23	Heat-Up Colloidal Synthesis of Shape-Controlled Cu-Se-S Nanostructuresâ€"Role of Precursor and Surfactant Reactivity and Performance in N2 Electroreduction. Nanomaterials, 2021, 11, 3369.	1.9	6
24	Simultaneous microwave-assisted reduction and B/N co-doping of graphene oxide for selective recognition of VOCs. Journal of Materials Chemistry C, 2022, 10, 3307-3317.	2.7	5
25	Catalytic Adsorptive Stripping Chronopotentiometry of Co(II)â€DMGâ€Bromate System at an In Situ Plated Lead Film Electrode. Electroanalysis, 2013, 25, 2298-2304.	1.5	4
26	Mineralizer-free synthesis of orthorhombic arsenic-phosphorus alloys. FlatChem, 2021, 30, 100297.	2.8	4
27	Photomodification of benzyl germanane with group 6 metal carbonyls. FlatChem, 2022, 33, 100354.	2.8	2
28	Arsenene and Antimonene. , 2022, , 149-172.		0