Zafer Say

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8408692/publications.pdf

Version: 2024-02-01

15 papers	395 citations	933447 10 h-index	996975 15 g-index
P-P-F-			
15 all docs	15 docs citations	15 times ranked	625 citing authors

#	Article	IF	CITATIONS
1	MnO _{<i>x</i>} -Promoted PdAg Alloy Nanoparticles for the Additive-Free Dehydrogenation of Formic Acid at Room Temperature. ACS Catalysis, 2015, 5, 6099-6110.	11.2	120
2	Dry reforming of glycerol over Rh-based ceria and zirconia catalysts: New insights on catalyst activity and stability. Applied Catalysis A: General, 2018, 564, 157-171.	4.3	43
3	TiO2–Al2O3 binary mixed oxide surfaces for photocatalytic NOx abatement. Applied Surface Science, 2014, 318, 142-149.	6.1	41
4	Continuous Microfluidic Synthesis of Pd Nanocubes and PdPt Core–Shell Nanoparticles and Their Catalysis of NO ₂ Reduction. ACS Applied Materials & Interfaces, 2019, 11, 36196-36204.	8.0	41
5	Exceptionally active and stable catalysts for CO2 reforming of glycerol to syngas. Applied Catalysis B: Environmental, 2019, 256, 117808.	20.2	35
6	SOx uptake and release properties of TiO2/Al2O3 and BaO/TiO2/Al2O3 mixed oxide systems as NOx storage materials. Catalysis Today, 2012, 184, 54-71.	4.4	25
7	NaCl-Promoted CuO–RuO2/SiO2 Catalysts for Propylene Epoxidation with O2 at Atmospheric Pressures: A Combinatorial Micro-reactor Study. Catalysis Letters, 2015, 145, 596-605.	2.6	22
8	NOx storage and reduction pathways on zirconia and titania functionalized binary and ternary oxides as NOx storage and reduction (NSR) systems. Catalysis Today, 2014, 231, 135-144.	4.4	15
9	Light-Off in Plasmon-Mediated Photocatalysis. ACS Nano, 2021, 15, 11535-11542.	14.6	14
10	Enhanced Sulfur Tolerance of Ceria-Promoted NO x Storage Reduction (NSR) Catalysts: Sulfur Uptake, Thermal Regeneration and Reduction with H2(g). Topics in Catalysis, 2013, 56, 950-957.	2.8	10
11	Sulfur-tolerant BaO/ZrO ₂ /TiO ₂ /Al ₂ O ₃ quaternary mixed oxides for deNO _X catalysis. Catalysis Science and Technology, 2017, 7, 133-144.	4.1	8
12	Sulfur Poisoning and Regeneration Behavior of Perovskite-Based NO Oxidation Catalysts. Topics in Catalysis, 2017, 60, 40-51.	2.8	7
13	Trade-off between NOx storage capacity and sulfur tolerance on Al2O3/ZrO2/TiO2–based DeNOx catalysts. Catalysis Today, 2019, 320, 152-164.	4.4	7
14	A highly active and stable Ru catalyst for syngas production via glycerol dry reforming: Unraveling the interplay between support material and the active sites. Applied Catalysis A: General, 2022, 636, 118577.	4.3	4
15	Catalytically active and thermally stable core–shell gold–silica nanorods for CO oxidation. RSC Advances, 2021, 11, 11642-11650.	3.6	3